Suppr超能文献

对无局部淋巴结受累的远处转移性非小细胞肺癌的研究:来自大型数据库的真实世界数据。

Investigations of the distant metastatic non-small cell lung cancer without local lymph node involvement: Real world data from a large database.

机构信息

Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Clin Respir J. 2023 Aug;17(8):780-790. doi: 10.1111/crj.13668. Epub 2023 Jul 24.

Abstract

INTRODUCTION

This study aimed to investigate the presentations and survival outcomes of the distant metastatic non-small cell lung cancer (NSCLC) without lymph node involvement to obtain a clearer picture of this special subgroup of metastatic NSCLC.

METHOD

A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was used to select the prognostic variables. A nomogram and corresponding risk-classifying systems were constructed. The C-index and calibration curves were used to evaluate the performance of the model. Overall survival (OS) curves were plotted using the Kaplan-Meier method, and the log-rank test was used to compare OS differences between groups. Propensity score matching (PSM) was performed to reduce bias.

RESULT

A total of 12 610 NSCLC patients with M1 category (N0 group: 3045 cases; N1-3 group: 9565 cases) were included. Regarding the N0 group, multivariate analysis demonstrated that age, sex, race, surgery, grade, tumor size, and M category were independent prognostic factors. A nomogram and corresponding risk-classifying systems were formulated. Favorable validation results were obtained from the C-index, calibration curves, and survival comparisons. Survival curves demonstrated that N0 NSCLC patients had better survival than N1-3 NSCLC patients both before and after PSM. Furthermore, the survival of resected N0M1 patients was superior to that of those without surgery.

CONCLUSION

In this study, a prognostic nomogram and risk-classifying systems designed for the T1-4N0M1 NSCLC patients showed acceptable performance. Primary lung tumor resection might be a feasible treatment for this population subset. Additionally, we proposed that lymph node stage might have a place in the forthcoming tumor-node-metastasis (TNM) staging proposal for NSCLC patients with M1 category.

摘要

介绍

本研究旨在探讨无淋巴结受累的远处转移性非小细胞肺癌(NSCLC)的表现和生存结果,以更清楚地了解这一特殊的转移性 NSCLC 亚组。

方法

使用最小绝对收缩和选择算子(LASSO)惩罚 Cox 回归分析来选择预后变量。构建了列线图和相应的风险分类系统。使用 C 指数和校准曲线评估模型的性能。使用 Kaplan-Meier 方法绘制总生存期(OS)曲线,并用对数秩检验比较组间 OS 差异。进行倾向评分匹配(PSM)以减少偏差。

结果

共纳入 12610 例 M1 期 NSCLC 患者(N0 组:3045 例;N1-3 组:9565 例)。对于 N0 组,多变量分析表明,年龄、性别、种族、手术、分级、肿瘤大小和 M 分期是独立的预后因素。构建了列线图和相应的风险分类系统。C 指数、校准曲线和生存比较均获得了良好的验证结果。生存曲线表明,N0 NSCLC 患者在 PSM 前后的生存均优于 N1-3 NSCLC 患者。此外,N0M1 患者的手术切除的生存情况优于未手术的患者。

结论

本研究中,为 T1-4N0M1 NSCLC 患者设计的预后列线图和风险分类系统表现可接受。原发性肺肿瘤切除可能是这一人群亚组的一种可行治疗方法。此外,我们提出淋巴结分期可能在即将到来的 NSCLC 患者 M1 期肿瘤-淋巴结-转移(TNM)分期建议中占有一席之地。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c3f/10435941/bc186912da92/CRJ-17-780-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验