Suppr超能文献

上呼吸道-消化道癌症的病例分割:特定部位的结果。

Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes.

机构信息

Unit of Otorhinolaryngology, Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy.

Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy.

出版信息

Acta Otorhinolaryngol Ital. 2023 Aug;43(4):283-290. doi: 10.14639/0392-100X-N2336.

Abstract

OBJECTIVE

To achieve instance segmentation of upper aerodigestive tract (UADT) neoplasms using a deep learning (DL) algorithm, and to identify differences in its diagnostic performance in three different sites: larynx/hypopharynx, oral cavity and oropharynx.

METHODS

A total of 1034 endoscopic images from 323 patients were examined under narrow band imaging (NBI). The Mask R-CNN algorithm was used for the analysis. The dataset split was: 935 training, 48 validation and 51 testing images. Dice Similarity Coefficient (Dsc) was the main outcome measure.

RESULTS

Instance segmentation was effective in 76.5% of images. The mean Dsc was 0.90 ± 0.05. The algorithm correctly predicted 77.8%, 86.7% and 55.5% of lesions in the larynx/hypopharynx, oral cavity, and oropharynx, respectively. The mean Dsc was 0.90 ± 0.05 for the larynx/hypopharynx, 0.60 ± 0.26 for the oral cavity, and 0.81 ± 0.30 for the oropharynx. The analysis showed inferior diagnostic results in the oral cavity compared with the larynx/hypopharynx (p < 0.001).

CONCLUSIONS

The study confirms the feasibility of instance segmentation of UADT using DL algorithms and shows inferior diagnostic results in the oral cavity compared with other anatomic areas.

摘要

目的

使用深度学习(DL)算法实现上呼吸道(UADT)肿瘤的实例分割,并确定在三个不同部位(喉/下咽、口腔和口咽)的诊断性能差异。

方法

对 323 例患者的 1034 张内镜图像进行窄带成像(NBI)检查。采用 Mask R-CNN 算法进行分析。数据集的划分是:935 张训练图像、48 张验证图像和 51 张测试图像。Dice 相似系数(Dsc)是主要的观察指标。

结果

76.5%的图像进行实例分割是有效的。平均 Dsc 为 0.90 ± 0.05。该算法正确预测了喉/下咽、口腔和口咽的病变分别为 77.8%、86.7%和 55.5%。喉/下咽的平均 Dsc 为 0.90 ± 0.05,口腔为 0.60 ± 0.26,口咽为 0.81 ± 0.30。分析显示,口腔的诊断结果明显劣于喉/下咽(p < 0.001)。

结论

本研究证实了使用 DL 算法进行 UADT 实例分割的可行性,并显示出与其他解剖区域相比,口腔的诊断结果较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b853/10366566/fbf74a7eaa0a/aoi-2023-04-283-e001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验