Suppr超能文献

离子化详细参数和簇剂量:用于带电粒子放射治疗计划中选择纳米剂量学量的数学模型。

Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy.

机构信息

University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America.

Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA 92350, United States of America.

出版信息

Phys Med Biol. 2023 Aug 14;68(17). doi: 10.1088/1361-6560/acea16.

Abstract

. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).. Our model provides for selection of preferred ID parameters () for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicand macroscopic RTP. Selection ofis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteen:,= 2, 3, …, 10, the number of ionizations in clusters ofor more per particle, and,= 1, 2, …, 10, the number of clusters ofor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.. The preferredwereandfor aerobic cells,andfor hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferred. Conversely, there was no significant difference forfor aerobic cells andfor hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for thesehad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.. Our model provides a practical means to select preferredfrom radiobiological data, and to convertto the macroscopic cluster dose for particle RTP.

摘要

. 提出了一种应用离子化细节(ID)的数学模型,即沿着粒子轨迹的详细空间分布的离子化,用于质子和离子束放射治疗计划(RTP)。.. 我们的模型提供了选择最适合 RTP 的 ID 参数()的方法,这些参数与生物学效应最相关。簇剂量被提议用于弥合微观和宏观 RTP 之间的巨大差距。选择是使用已发表的质子穿过氩的细胞存活测量来证明的,比较了十九个结果:,= 2, 3, …, 10,每个粒子中或更多个离子化簇的数量,和,= 1, 2, …, 10,每个粒子中或更多个簇的数量。然后,我们描述了该模型在基于 ID 的 RTP 中的应用,并提出了向临床转化的途径。.. 对于有氧细胞,优选的和分别为和;对于缺氧细胞,优选的和分别为和。对于具有相同 LET 或优选的离子束,细胞存活存在显著差异。相反,对于有氧细胞和缺氧细胞,和没有显著差异,无论离子束原子数或能量如何。此外,对于这些,具有相同簇剂量的细胞具有相同的细胞存活率。基于这些初步结果和纳米剂量学中的其他有说服力的结果,可以合理地断言,存在与生物学效应更相关的,而不是当前基于 LET 的方法和用于粒子 RTP 的微剂量 RBE 模型。然而,还需要更多的生物学变量,如细胞系和周期阶段,以及离子束脉冲结构和速率进行研究。.. 我们的模型为从放射生物学数据中选择优选的提供了一种实用的方法,并将转换为用于粒子 RTP 的宏观簇剂量。

相似文献

7
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.
Eur J Cancer. 2007 Jan;43(2):258-70. doi: 10.1016/j.ejca.2006.10.014. Epub 2006 Dec 19.
8
Positron emission tomography-adapted therapy for first-line treatment in individuals with Hodgkin lymphoma.
Cochrane Database Syst Rev. 2015 Jan 9;1(1):CD010533. doi: 10.1002/14651858.CD010533.pub2.

引用本文的文献

1
TOPAS-nBio-Reg: a regression testing system for track structure simulations in TOPAS-nBio.
Phys Med Biol. 2025 May 16;70(10). doi: 10.1088/1361-6560/add4b9.
3
4
Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report.
Int J Part Ther. 2024 Aug 8;13:100626. doi: 10.1016/j.ijpt.2024.100626. eCollection 2024 Sep.
7
Creating uniform cluster dose spread-out Bragg peaks for proton and carbon beams.
Med Phys. 2024 Jun;51(6):4482-4488. doi: 10.1002/mp.16991. Epub 2024 Feb 20.
8
Superiorization of projection algorithms for linearly constrained inverse radiotherapy treatment planning.
Front Oncol. 2023 Oct 26;13:1238824. doi: 10.3389/fonc.2023.1238824. eCollection 2023.

本文引用的文献

1
Track Structure of Light Ions: The Link to Radiobiology.
Int J Mol Sci. 2023 Mar 18;24(6):5826. doi: 10.3390/ijms24065826.
2
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation.
Br J Cancer. 2023 Apr;128(8):1429-1438. doi: 10.1038/s41416-022-02117-6. Epub 2023 Jan 13.
3
The history of ion beam therapy in Germany.
Z Med Phys. 2022 Feb;32(1):6-22. doi: 10.1016/j.zemedi.2021.11.003. Epub 2022 Jan 31.
4
Applications of nanodosimetry in particle therapy planning and beyond.
Phys Med Biol. 2021 Dec 10;66(24). doi: 10.1088/1361-6560/ac35f1.
5
Geant4-DNA modeling of nanodosimetric quantities in the Jet Counter for alpha particles.
Phys Med Biol. 2021 Nov 11;66(22). doi: 10.1088/1361-6560/ac33eb.
6
A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management.
Int J Part Ther. 2021 Jun 25;8(1):36-49. doi: 10.14338/IJPT-20-00049.1. eCollection 2021 Summer.
7
The Emerging Potential of Multi-Ion Radiotherapy.
Front Oncol. 2021 Feb 22;11:624786. doi: 10.3389/fonc.2021.624786. eCollection 2021.
8
Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT).
Int J Radiat Oncol Biol Phys. 2021 Jul 15;110(4):1189-1199. doi: 10.1016/j.ijrobp.2021.02.024. Epub 2021 Feb 20.
9
Brain-Specific Relative Biological Effectiveness of Protons Based on Long-term Outcome of Patients With Nasopharyngeal Carcinoma.
Int J Radiat Oncol Biol Phys. 2021 Jul 15;110(4):984-992. doi: 10.1016/j.ijrobp.2021.02.018. Epub 2021 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验