文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无线电逻辑,一种用于处理电子健康记录和决策的医疗保健模型,用于乳腺疾病。

RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease.

机构信息

Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; GROW School for Oncology and Development Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Diagnostic Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands.

Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Diagnostic Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands; Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.

出版信息

Cell Rep Med. 2023 Aug 15;4(8):101131. doi: 10.1016/j.xcrm.2023.101131. Epub 2023 Jul 24.


DOI:10.1016/j.xcrm.2023.101131
PMID:37490915
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10439251/
Abstract

Digital health data used in diagnostics, patient care, and oncology research continue to accumulate exponentially. Most medical information, and particularly radiology results, are stored in free-text format, and the potential of these data remains untapped. In this study, a radiological repomics-driven model incorporating medical token cognition (RadioLOGIC) is proposed to extract repomics (report omics) features from unstructured electronic health records and to assess human health and predict pathological outcome via transfer learning. The average accuracy and F1-weighted score for the extraction of repomics features using RadioLOGIC are 0.934 and 0.934, respectively, and 0.906 and 0.903 for the prediction of breast imaging-reporting and data system scores. The areas under the receiver operating characteristic curve for the prediction of pathological outcome without and with transfer learning are 0.912 and 0.945, respectively. RadioLOGIC outperforms cohort models in the capability to extract features and also reveals promise for checking clinical diagnoses directly from electronic health records.

摘要

数字健康数据在诊断、患者护理和肿瘤学研究中的应用持续呈指数级增长。大多数医学信息,特别是放射学结果,都以自由文本格式存储,这些数据的潜力尚未被挖掘。在这项研究中,提出了一种基于放射组学驱动的模型,该模型结合了医学标记认知(RadioLOGIC),用于从非结构化电子健康记录中提取报告组学(报告组学)特征,并通过迁移学习评估人类健康和预测病理结果。使用 RadioLOGIC 提取报告组学特征的平均准确率和 F1 加权分数分别为 0.934 和 0.934,预测乳腺成像报告和数据系统评分的准确率和 F1 加权分数分别为 0.906 和 0.903。无迁移学习和有迁移学习的预测病理结果的受试者工作特征曲线下面积分别为 0.912 和 0.945。RadioLOGIC 在提取特征的能力上优于队列模型,并且有望直接从电子健康记录中检查临床诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/561afb12d9c0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/b207fae0c4a5/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/1c07109a10b0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/ae67c9eb966f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/d301fa2eb3cc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/d53e4b62019a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/561afb12d9c0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/b207fae0c4a5/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/1c07109a10b0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/ae67c9eb966f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/d301fa2eb3cc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/d53e4b62019a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6db/10439251/561afb12d9c0/gr5.jpg

相似文献

[1]
RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease.

Cell Rep Med. 2023-8-15

[2]
Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.

Ophthalmol Sci. 2022-2-12

[3]
Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports.

JCO Clin Cancer Inform. 2019-4

[4]
FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices.

Sensors (Basel). 2023-1-14

[5]
Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.

J Biomed Inform. 2022-3

[6]
Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.

Comput Biol Med. 2023-3

[7]
Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records.

Adv Ther. 2023-3

[8]
Natural Language Processing Approaches for Automated Multilevel and Multiclass Classification of Breast Lesions on Free-Text Cytopathology Reports.

JCO Clin Cancer Inform. 2022-9

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system.

BMC Med Inform Decis Mak. 2016-8-30

引用本文的文献

[1]
Exploring personalized neoadjuvant therapy selection strategies in breast cancer: an explainable multi-modal response model.

EClinicalMedicine. 2025-7-17

[2]
Approach to a preparation of dataset combining digital mammographic images and patient clinical data from electronic medical records.

Quant Imaging Med Surg. 2025-4-1

[3]
Ethical considerations on the role of artificial intelligence in defining the futility in emergency surgery.

Int J Surg. 2025-5-1

[4]
Generative pre-trained transformer 4o (GPT-4o) in solving text-based multiple response questions for European Diploma in Radiology (EDiR): a comparative study with radiologists.

Insights Imaging. 2025-3-22

[5]
Artificial intelligence in surgery.

Nat Med. 2024-5

[6]
BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study.

Radiology. 2024-4

[7]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

本文引用的文献

[1]
Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records.

Nat Med. 2022-10

[2]
Machine learning model to predict mental health crises from electronic health records.

Nat Med. 2022-6

[3]
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data.

Lancet Digit Health. 2022-6

[4]
The future of early cancer detection.

Nat Med. 2022-4

[5]
Surveillance of Safety of 3 Doses of COVID-19 mRNA Vaccination Using Electronic Health Records.

JAMA Netw Open. 2022-4-1

[6]
Identification of antimicrobial peptides from the human gut microbiome using deep learning.

Nat Biotechnol. 2022-6

[7]
Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis.

NPJ Digit Med. 2022-2-15

[8]
Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms.

Eur Radiol. 2022-3

[9]
Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning.

Nat Biomed Eng. 2021-6

[10]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索