Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; GROW School for Oncology and Development Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Diagnostic Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands.
Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Diagnostic Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands; Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
Cell Rep Med. 2023 Aug 15;4(8):101131. doi: 10.1016/j.xcrm.2023.101131. Epub 2023 Jul 24.
Digital health data used in diagnostics, patient care, and oncology research continue to accumulate exponentially. Most medical information, and particularly radiology results, are stored in free-text format, and the potential of these data remains untapped. In this study, a radiological repomics-driven model incorporating medical token cognition (RadioLOGIC) is proposed to extract repomics (report omics) features from unstructured electronic health records and to assess human health and predict pathological outcome via transfer learning. The average accuracy and F1-weighted score for the extraction of repomics features using RadioLOGIC are 0.934 and 0.934, respectively, and 0.906 and 0.903 for the prediction of breast imaging-reporting and data system scores. The areas under the receiver operating characteristic curve for the prediction of pathological outcome without and with transfer learning are 0.912 and 0.945, respectively. RadioLOGIC outperforms cohort models in the capability to extract features and also reveals promise for checking clinical diagnoses directly from electronic health records.
数字健康数据在诊断、患者护理和肿瘤学研究中的应用持续呈指数级增长。大多数医学信息,特别是放射学结果,都以自由文本格式存储,这些数据的潜力尚未被挖掘。在这项研究中,提出了一种基于放射组学驱动的模型,该模型结合了医学标记认知(RadioLOGIC),用于从非结构化电子健康记录中提取报告组学(报告组学)特征,并通过迁移学习评估人类健康和预测病理结果。使用 RadioLOGIC 提取报告组学特征的平均准确率和 F1 加权分数分别为 0.934 和 0.934,预测乳腺成像报告和数据系统评分的准确率和 F1 加权分数分别为 0.906 和 0.903。无迁移学习和有迁移学习的预测病理结果的受试者工作特征曲线下面积分别为 0.912 和 0.945。RadioLOGIC 在提取特征的能力上优于队列模型,并且有望直接从电子健康记录中检查临床诊断。
JCO Clin Cancer Inform. 2019-4
Cochrane Database Syst Rev. 2022-2-1
BMC Med Inform Decis Mak. 2016-8-30
Nat Med. 2024-5
J Hematol Oncol. 2023-11-27
Nat Med. 2022-4
JAMA Netw Open. 2022-4-1