Department of Physiology.
Neuroscience Interdepartmental Program.
J Neurosci. 2023 Aug 9;43(32):5810-5830. doi: 10.1523/JNEUROSCI.0697-23.2023. Epub 2023 Jul 25.
To understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance in male and female mice. Using tissue clearing and light sheet fluorescence microscopy (LSFM), we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC). We present DeepTraCE (deep learning-based tracing with combined enhancement), for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging), for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. Using TRAP2 mice and DeepCOUNT, we analyzed whole-brain functional connectivity underlying threat avoidance. PL was the most highly connected node with functional connections to subsets of PL-cPL, PL-NAc, and PL-VTA target sites. Using fiber photometry, we found that during threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically defined classes of mPFC neurons have specialized roles in threat avoidance. Understanding how the brain produces complex behaviors requires detailed knowledge of the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) plays a key role in learning, mood, and decision-making, including evaluating and responding to threats. mPFC dysfunction is strongly linked to fear, anxiety and mood disorders. Although mPFC circuits are clear therapeutic targets, gaps in our understanding of how they produce cognitive and emotional behaviors prevent us from designing effective interventions. To address this, we developed a high-throughput analysis pipeline for quantifying bulk-labeled fluorescent axons [DeepTraCE (deep learning-based tracing with combined enhancement)] or cell bodies [DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging)] in intact cleared brains. Using DeepTraCE, DeepCOUNT, and fiber photometry, we performed detailed anatomic and functional mapping of mPFC neuronal classes, identifying specialized roles in threat avoidance.
为了理解大脑如何产生行为,我们必须阐明神经元连接和功能之间的关系。内侧前额叶皮层(mPFC)对于包括决策和情绪在内的复杂功能至关重要。mPFC 投射神经元广泛分支,但 mPFC 神经元活动与全脑连接之间的关系还了解甚少。我们进行了全脑连接映射和光纤光度测定,以更好地了解控制雄性和雌性小鼠回避威胁的 mPFC 回路。使用组织透明化和光片荧光显微镜(LSFM),我们绘制了投射到伏隔核(NAc)、腹侧被盖区(VTA)或对侧 mPFC(cmPFC)的 mPFC 神经元群体的全脑轴突分支。我们提出了 DeepTraCE(基于深度学习的组合增强标记轴突追踪),用于量化清除组织图像中的批量标记轴突投射,以及 DeepCOUNT(基于 3D U-net 像素标记的对象的深度学习计数),用于量化细胞体。使用 DeepTraCE 生成的解剖图谱与已知的轴突投射模式对齐,并在区域内显示出特定类别的拓扑投射。使用 TRAP2 小鼠和 DeepCOUNT,我们分析了回避威胁的全脑功能连接。PL 是与 PL-cPL、PL-NAc 和 PL-VTA 靶位的亚群具有功能连接的最高度连接节点。使用光纤光度测定法,我们发现,在回避威胁时,cmPFC 和 NAc 投射器对条件刺激进行编码,但只有在需要采取行动来避免威胁时才会进行编码。mPFC-VTA 神经元对学习但不是先天回避行为进行编码。我们的研究结果共同提出了用于定量全脑分析的新方法和优化方法,并表明解剖定义的 mPFC 神经元类具有在回避威胁方面的专门作用。理解大脑如何产生复杂行为需要详细了解神经元连接和功能之间的关系。内侧前额叶皮层(mPFC)在学习、情绪和决策方面发挥着关键作用,包括评估和应对威胁。mPFC 功能障碍与恐惧、焦虑和情绪障碍密切相关。尽管 mPFC 回路是明确的治疗靶点,但我们对它们如何产生认知和情绪行为的理解不足,阻碍了我们设计有效的干预措施。为了解决这个问题,我们开发了一种用于在完整清除的大脑中定量批量标记荧光轴突[DeepTraCE(基于深度学习的组合增强标记轴突追踪)]或细胞体[DeepCOUNT(基于 3D U-net 像素标记的对象的深度学习计数)]的高通量分析管道。使用 DeepTraCE、DeepCOUNT 和光纤光度测定法,我们对 mPFC 神经元类进行了详细的解剖和功能映射,确定了在回避威胁中的专门作用。