Suppr超能文献

缓解期抑郁症患者的突显网络和情感网络的功能连接可预测发作复发。

Functional connectivity of salience and affective networks among remitted depressed patients predicts episode recurrence.

机构信息

Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.

Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA.

出版信息

Neuropsychopharmacology. 2023 Dec;48(13):1901-1909. doi: 10.1038/s41386-023-01653-w. Epub 2023 Jul 25.

Abstract

Recurrent episodes in major depressive disorder (MDD) are common but the neuroimaging features predictive of recurrence are not established. Participants in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study who achieved remission after 12 weeks of treatment withcognitive behavior therapy, duloxetine, or escitalopram were prospectively monitored for up to 21 months for recurrence. Neuroimaging markers predictive of recurrence were identified from week 12 functional magnetic resonance imaging scans by analyzing whole-brain resting state functional connectivity (RSFC) using seeds for four brain networks that are altered in MDD. Neuroimaging correlates of established clinical predictors of recurrence, including the magnitude of depressive (Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale) symptom severity at time of remission, and a comorbid anxiety disorder were examined for their similarity to the neuroimaging predictors of recurrence. Of the 344 patients randomized in PReDICT, 61 achieved remission and had usable scans for analysis, 9 of whom experienced recurrence during follow-up. Recurrence was predicted by: 1) increased RSFC between subcallosal cingulate cortex (SCC) and right anterior insula, 2) decreased RSFC between SCC and bilateral primary visual cortex, and 3) decreased RSFC between insula and bilateral caudate. Week 12 depression and anxiety scores were negatively correlated with RSFC strength between executive control and default mode networks, but they were not correlated with the three RSFC patterns predicting recurrence. We conclude that altered RSFC in SCC and anterior insula networks are prospective risk factors associated with MDD recurrence, reflecting additional sources of risk beyond clinical measures.

摘要

复发性重度抑郁症(MDD)较为常见,但可预测复发的神经影像学特征尚不确定。在Predictors of Remission in Depression to Individual and Combined Treatments(PReDICT)研究中,接受认知行为疗法、度洛西汀或依他普仑治疗 12 周后达到缓解的参与者,前瞻性监测长达 21 个月的复发情况。通过分析 MDD 改变的四个大脑网络的种子,从第 12 周的功能磁共振成像扫描中确定了可预测复发的神经影像学标志物。研究了与复发相关的既定临床预测因子(包括缓解时抑郁(汉密尔顿抑郁评定量表)、焦虑(汉密尔顿焦虑评定量表)症状严重程度的幅度,以及共病焦虑障碍)与预测复发的神经影像学标志物的相似性。在 PReDICT 中随机分配的 344 名患者中,有 61 名患者达到缓解并进行了可用于分析的扫描,其中 9 名在随访期间复发。复发可由以下因素预测:1)扣带回下皮质(SCC)和右侧前岛叶之间的 rsfc 增加;2)SCC 与双侧初级视觉皮层之间的 rsfc 减少;3)岛叶与双侧尾状核之间的 rsfc 减少。第 12 周的抑郁和焦虑评分与执行控制和默认模式网络之间的 rsfc 强度呈负相关,但与预测复发的三个 rsfc 模式无关。我们的结论是,SCC 和前岛叶网络中改变的 rsfc 是与 MDD 复发相关的前瞻性风险因素,反映了临床测量之外的额外风险源。

相似文献

1
Functional connectivity of salience and affective networks among remitted depressed patients predicts episode recurrence.
Neuropsychopharmacology. 2023 Dec;48(13):1901-1909. doi: 10.1038/s41386-023-01653-w. Epub 2023 Jul 25.
2
Shared and Unique Changes in Brain Connectivity Among Depressed Patients After Remission With Pharmacotherapy Versus Psychotherapy.
Am J Psychiatry. 2023 Mar 1;180(3):218-229. doi: 10.1176/appi.ajp.21070727. Epub 2023 Jan 18.
3
Omega-3 fatty acids for depression in adults.
Cochrane Database Syst Rev. 2015 Nov 5;2015(11):CD004692. doi: 10.1002/14651858.CD004692.pub4.
5
Omega-3 fatty acids for depression in adults.
Cochrane Database Syst Rev. 2021 Nov 24;11(11):CD004692. doi: 10.1002/14651858.CD004692.pub5.
6
New generation antidepressants for depression in children and adolescents: a network meta-analysis.
Cochrane Database Syst Rev. 2021 May 24;5(5):CD013674. doi: 10.1002/14651858.CD013674.pub2.
7
Vortioxetine for depression in adults.
Cochrane Database Syst Rev. 2017 Jul 5;7(7):CD011520. doi: 10.1002/14651858.CD011520.pub2.

引用本文的文献

1
Network homeostasis: functional brain network alterations and relapse in remitted late-life depression.
Neuropsychopharmacology. 2025 May 29. doi: 10.1038/s41386-025-02138-8.
2
Meta-Analysis of Brain Volumetric Abnormalities in Patients with Remitted Major Depressive Disorder.
Depress Anxiety. 2024 May 15;2024:6633510. doi: 10.1155/2024/6633510. eCollection 2024.
4
Prediction of individual patient outcomes to psychotherapy vs medication for major depression.
Npj Ment Health Res. 2025 Feb 5;4(1):4. doi: 10.1038/s44184-025-00119-9.

本文引用的文献

1
Shared and Unique Changes in Brain Connectivity Among Depressed Patients After Remission With Pharmacotherapy Versus Psychotherapy.
Am J Psychiatry. 2023 Mar 1;180(3):218-229. doi: 10.1176/appi.ajp.21070727. Epub 2023 Jan 18.
4
Metabolic features of recurrent major depressive disorder in remission, and the risk of future recurrence.
Transl Psychiatry. 2021 Jan 11;11(1):37. doi: 10.1038/s41398-020-01182-w.
5
Neurobiological predictors for clinical trajectories in fully remitted depressed patients.
Depress Anxiety. 2021 Apr;38(4):447-455. doi: 10.1002/da.23108. Epub 2020 Nov 1.
6
Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis.
Mol Psychiatry. 2020 Feb;25(2):321-338. doi: 10.1038/s41380-019-0585-z. Epub 2019 Nov 19.
7
Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies.
JAMA Psychiatry. 2020 Feb 1;77(2):172-179. doi: 10.1001/jamapsychiatry.2019.3351.
8
Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression.
Neuroimage Clin. 2018;20:1001-1009. doi: 10.1016/j.nicl.2018.10.004. Epub 2018 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验