Suppr超能文献

安得诺菲德:一种基于人工智能的雄激素受体抑制剂预测模型。

AndroPred: an artificial intelligence-based model for predicting androgen receptor inhibitors.

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.

出版信息

J Biomol Struct Dyn. 2024 Sep;42(14):7340-7348. doi: 10.1080/07391102.2023.2239935. Epub 2023 Jul 26.

Abstract

Androgen receptor (AR), a steroid receptor, plays a pivotal role in the pathogenesis of prostate cancer (PCa). AR controls the transcription of genes that help cells avoid apoptosis and proliferate, thereby contributing to the development of PCa. Understanding AR molecular mechanisms has led to the development of newer drugs that inhibit androgen production enzymes or block ARs. The FDA has approved a small number of AR-inhibiting drugs for use in PCa thus far, as the identification of novel AR inhibitors is difficult, expensive, time-consuming, and labor-intensive. To accelerate the process, artificial intelligence (AI) algorithms were employed to predict AR inhibitors using a dataset of 2242 compounds. Four machine learning (ML) and deep learning (DL) algorithms were used to train different prediction models based on molecular descriptors (1D, 2D, and molecular fingerprints). The DL-based prediction model outperformed the other trained models with accuracies of 92.18% and 93.05% on the training and test datasets, respectively. Our findings highlight the potential of DL, particularly the DNN model, as an effective approach for predicting AR inhibitors, which could significantly streamline the process of identifying novel AR inhibitors in PCa drug discovery. Further validation of these models using experimental assays and prospective testing of newly designed compounds would be valuable to confirm their predictive power and applicability in practical drug discovery settings.Communicated by Ramaswamy H. Sarma.

摘要

雄激素受体(AR)是一种类固醇受体,在前列腺癌(PCa)的发病机制中起着关键作用。AR 控制着帮助细胞避免凋亡和增殖的基因的转录,从而促进了 PCa 的发展。对 AR 分子机制的理解导致了新一代抑制雄激素生成酶或阻断 AR 的药物的开发。迄今为止,FDA 已经批准了少数几种用于治疗 PCa 的 AR 抑制药物,因为鉴定新型 AR 抑制剂既困难、昂贵、耗时又费力。为了加速这一过程,人工智能(AI)算法被用于使用包含 2242 种化合物的数据集来预测 AR 抑制剂。四种机器学习(ML)和深度学习(DL)算法被用于基于分子描述符(1D、2D 和分子指纹)训练不同的预测模型。基于 DL 的预测模型在训练集和测试集上的准确率分别达到了 92.18%和 93.05%,优于其他训练模型。我们的研究结果强调了 DL 的潜力,特别是 DNN 模型,作为一种预测 AR 抑制剂的有效方法,这可能大大简化在 PCa 药物发现中鉴定新型 AR 抑制剂的过程。使用实验检测和新设计化合物的前瞻性测试进一步验证这些模型,将有助于确认它们在实际药物发现环境中的预测能力和适用性。Ramaseswamy H. Sarma 通讯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验