Ejaz Zainab Haider, Shaikh Reyan Hussain, Fatimi Alizeh Sonia, Khan Saqib Raza
Aga Khan University Hospital, Aga Khan Medical College, Sindh, Karachi 748000, Pakistan.
Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada.
Ecancermedicalscience. 2025 Jul 29;19:1953. doi: 10.3332/ecancer.2025.1953. eCollection 2025.
Metastatic castration-resistant prostate cancer (mCRPC) remains a formidable clinical challenge despite advancements in therapy. This narrative review explores the role of artificial intelligence (AI), machine learning and deep learning in addressing therapeutic resistance in mCRPC. AI-driven approaches leverage integrated datasets encompassing genomics, proteomics and clinical parameters to uncover molecular mechanisms, predict treatment responses and identify biomarkers of resistance. These methodologies promise personalised treatment strategies tailored to individual patient profiles. However, data heterogeneity and regulatory considerations are challenges that hinder the translation of AI insights into clinical practice. By synthesising current literature, this review examines the progress, potential and limitations of AI applications in combating therapeutic resistance in mCRPC, highlighting implications for future research and clinical implementation.
尽管治疗方面取得了进展,但转移性去势抵抗性前列腺癌(mCRPC)仍然是一个严峻的临床挑战。本叙述性综述探讨了人工智能(AI)、机器学习和深度学习在应对mCRPC治疗抵抗方面的作用。人工智能驱动的方法利用包含基因组学、蛋白质组学和临床参数的综合数据集来揭示分子机制、预测治疗反应并识别耐药生物标志物。这些方法有望根据个体患者情况制定个性化治疗策略。然而,数据异质性和监管方面的考虑是阻碍将人工智能见解转化为临床实践的挑战。通过综合当前文献,本综述考察了人工智能应用在对抗mCRPC治疗抵抗方面的进展、潜力和局限性,强调了对未来研究和临床实施的影响。