Quantitative Risk Management, Yonsei University, Incheon 21983, South Korea.
Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Biostatistics. 2024 Jul 1;25(3):769-785. doi: 10.1093/biostatistics/kxad020.
Radionuclide imaging plays a critical role in the diagnosis and management of kidney obstruction. However, most practicing radiologists in US hospitals have insufficient time and resources to acquire training and experience needed to interpret radionuclide images, leading to increased diagnostic errors. To tackle this problem, Emory University embarked on a study that aims to develop a computer-assisted diagnostic (CAD) tool for kidney obstruction by mining and analyzing patient data comprised of renogram curves, ordinal expert ratings on the obstruction status, pharmacokinetic variables, and demographic information. The major challenges here are the heterogeneity in data modes and the lack of gold standard for determining kidney obstruction. In this article, we develop a statistically principled CAD tool based on an integrative latent class model that leverages heterogeneous data modalities available for each patient to provide accurate prediction of kidney obstruction. Our integrative model consists of three sub-models (multilevel functional latent factor regression model, probit scalar-on-function regression model, and Gaussian mixture model), each of which is tailored to the specific data mode and depends on the unknown obstruction status (latent class). An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. Extensive simulations are conducted to evaluate the performance of the proposed method. An application to an Emory renal study demonstrates the usefulness of our model as a CAD tool for kidney obstruction.
放射性核素成像是诊断和治疗肾梗阻的关键手段。然而,美国医院的大多数放射科医生都没有足够的时间和资源来获取解读放射性核素图像所需的培训和经验,这导致诊断错误的增加。为了解决这个问题,埃默里大学开展了一项研究,旨在通过挖掘和分析由肾图曲线、梗阻状态的有序专家评分、药代动力学变量和人口统计学信息组成的患者数据,开发一种用于肾梗阻的计算机辅助诊断 (CAD) 工具。这里的主要挑战是数据模式的异质性和缺乏确定肾梗阻的金标准。在本文中,我们开发了一种基于综合潜在类模型的统计上合理的 CAD 工具,该工具利用每个患者可用的异构数据模式来提供肾梗阻的准确预测。我们的综合模型由三个子模型(多层次功能潜在因子回归模型、概率标量函数回归模型和高斯混合模型)组成,每个模型都针对特定的数据模式,并取决于未知的梗阻状态(潜在类)。开发了一种有效的 MCMC 算法来训练模型并预测肾梗阻及其相关不确定性。进行了广泛的模拟以评估所提出方法的性能。对埃默里肾脏研究的应用表明,我们的模型作为肾梗阻 CAD 工具是有用的。