Suppr超能文献

用于诊断肾梗阻的异构数据模态的综合潜在类别模型。

An integrative latent class model of heterogeneous data modalities for diagnosing kidney obstruction.

机构信息

Quantitative Risk Management, Yonsei University, Incheon 21983, South Korea.

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Biostatistics. 2024 Jul 1;25(3):769-785. doi: 10.1093/biostatistics/kxad020.

Abstract

Radionuclide imaging plays a critical role in the diagnosis and management of kidney obstruction. However, most practicing radiologists in US hospitals have insufficient time and resources to acquire training and experience needed to interpret radionuclide images, leading to increased diagnostic errors. To tackle this problem, Emory University embarked on a study that aims to develop a computer-assisted diagnostic (CAD) tool for kidney obstruction by mining and analyzing patient data comprised of renogram curves, ordinal expert ratings on the obstruction status, pharmacokinetic variables, and demographic information. The major challenges here are the heterogeneity in data modes and the lack of gold standard for determining kidney obstruction. In this article, we develop a statistically principled CAD tool based on an integrative latent class model that leverages heterogeneous data modalities available for each patient to provide accurate prediction of kidney obstruction. Our integrative model consists of three sub-models (multilevel functional latent factor regression model, probit scalar-on-function regression model, and Gaussian mixture model), each of which is tailored to the specific data mode and depends on the unknown obstruction status (latent class). An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. Extensive simulations are conducted to evaluate the performance of the proposed method. An application to an Emory renal study demonstrates the usefulness of our model as a CAD tool for kidney obstruction.

摘要

放射性核素成像是诊断和治疗肾梗阻的关键手段。然而,美国医院的大多数放射科医生都没有足够的时间和资源来获取解读放射性核素图像所需的培训和经验,这导致诊断错误的增加。为了解决这个问题,埃默里大学开展了一项研究,旨在通过挖掘和分析由肾图曲线、梗阻状态的有序专家评分、药代动力学变量和人口统计学信息组成的患者数据,开发一种用于肾梗阻的计算机辅助诊断 (CAD) 工具。这里的主要挑战是数据模式的异质性和缺乏确定肾梗阻的金标准。在本文中,我们开发了一种基于综合潜在类模型的统计上合理的 CAD 工具,该工具利用每个患者可用的异构数据模式来提供肾梗阻的准确预测。我们的综合模型由三个子模型(多层次功能潜在因子回归模型、概率标量函数回归模型和高斯混合模型)组成,每个模型都针对特定的数据模式,并取决于未知的梗阻状态(潜在类)。开发了一种有效的 MCMC 算法来训练模型并预测肾梗阻及其相关不确定性。进行了广泛的模拟以评估所提出方法的性能。对埃默里肾脏研究的应用表明,我们的模型作为肾梗阻 CAD 工具是有用的。

相似文献

1
An integrative latent class model of heterogeneous data modalities for diagnosing kidney obstruction.
Biostatistics. 2024 Jul 1;25(3):769-785. doi: 10.1093/biostatistics/kxad020.
2
A Bayesian Latent Class Model to Predict Kidney Obstruction in the Absence of Gold Standard.
J Am Stat Assoc. 2020;115(532):1645-1663. doi: 10.1080/01621459.2019.1689983. Epub 2020 Jan 6.
3
Computer-aided diagnosis system for the classification of multi-class kidney abnormalities in the noisy ultrasound images.
Comput Methods Programs Biomed. 2021 Jun;205:106071. doi: 10.1016/j.cmpb.2021.106071. Epub 2021 Apr 8.
4
A Bayesian latent class model for predicting gestational age in health administrative data.
Pharm Stat. 2022 Nov;21(6):1199-1218. doi: 10.1002/pst.2225. Epub 2022 May 10.
6
iRENEX: a clinically informed decision support system for the interpretation of ⁹⁹mTc-MAG3 scans to detect renal obstruction.
Eur J Nucl Med Mol Imaging. 2012 Sep;39(9):1483-91. doi: 10.1007/s00259-012-2151-7. Epub 2012 May 30.
7
Latent classification model for censored longitudinal binary outcome.
Stat Med. 2024 Sep 10;43(20):3943-3957. doi: 10.1002/sim.10156. Epub 2024 Jul 1.
9
Keeping continuous diagnostic data continuous: Application of Bayesian latent class models in veterinary research.
Prev Vet Med. 2022 Apr;201:105596. doi: 10.1016/j.prevetmed.2022.105596. Epub 2022 Feb 17.
10
Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA-GAMMA Data Augmentation.
Psychometrika. 2022 Sep;87(3):903-945. doi: 10.1007/s11336-021-09815-9. Epub 2022 Jan 13.

本文引用的文献

1
A Bayesian Latent Class Model to Predict Kidney Obstruction in the Absence of Gold Standard.
J Am Stat Assoc. 2020;115(532):1645-1663. doi: 10.1080/01621459.2019.1689983. Epub 2020 Jan 6.
2
Estimation of diagnostic test accuracy without full verification: a review of latent class methods.
Stat Med. 2014 Oct 30;33(24):4141-69. doi: 10.1002/sim.6218. Epub 2014 Jun 9.
4
Sparse Bayesian infinite factor models.
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.
5
Bayesian latent factor regression for functional and longitudinal data.
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.
6
Integrating the predictiveness of a marker with its performance as a classifier.
Am J Epidemiol. 2008 Feb 1;167(3):362-8. doi: 10.1093/aje/kwm305. Epub 2007 Nov 2.
7
The new era of medical imaging--progress and pitfalls.
N Engl J Med. 2006 Jun 29;354(26):2822-8. doi: 10.1056/NEJMhpr061219.
8
[Variability in interpretation of static renal scintigraphy findings].
Vojnosanit Pregl. 2005 Mar;62(3):189-93. doi: 10.2298/vsp0503189j.
9
Estimating disease prevalence in two-phase studies.
Biostatistics. 2003 Apr;4(2):313-26. doi: 10.1093/biostatistics/4.2.313.
10
A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations.
Stat Med. 2000 May 30;19(10):1303-18. doi: 10.1002/(sici)1097-0258(20000530)19:10<1303::aid-sim424>3.0.co;2-e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验