Suppr超能文献

通过氧化还原耦合的固有选择性原子层沉积在铜/二氧化硅上实现氧化钽的自对准图案化

Self-aligned patterning of tantalum oxide on Cu/SiO through redox-coupled inherently selective atomic layer deposition.

作者信息

Li Yicheng, Qi Zilian, Lan Yuxiao, Cao Kun, Wen Yanwei, Zhang Jingming, Gu Eryan, Long Junzhou, Yan Jin, Shan Bin, Chen Rong

机构信息

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

出版信息

Nat Commun. 2023 Jul 26;14(1):4493. doi: 10.1038/s41467-023-40249-2.

Abstract

Atomic-scale precision alignment is a bottleneck in the fabrication of next-generation nanoelectronics. In this study, a redox-coupled inherently selective atomic layer deposition (ALD) is introduced to tackle this challenge. The 'reduction-adsorption-oxidation' ALD cycles are designed by adding an in-situ reduction step, effectively inhibiting nucleation on copper. As a result, tantalum oxide exhibits selective deposition on various oxides, with no observable growth on Cu. Furthermore, the self-aligned TaO is successfully deposited on Cu/SiO nanopatterns, avoiding excessive mushroom growth at the edges or the emergence of undesired nucleation defects within the Cu region. The film thickness on SiO exceeds 5 nm with a selectivity of 100%, marking it as one of the highest reported to date. This method offers a streamlined and highly precise self-aligned manufacturing technique, which is advantageous for the future downscaling of integrated circuits.

摘要

原子尺度的精确对准是下一代纳米电子器件制造中的一个瓶颈。在本研究中,引入了一种氧化还原耦合的固有选择性原子层沉积(ALD)来应对这一挑战。通过添加原位还原步骤设计了“还原-吸附-氧化”ALD循环,有效抑制了在铜上的成核。结果,氧化钽在各种氧化物上表现出选择性沉积,在铜上没有可观察到的生长。此外,自对准的TaO成功沉积在Cu/SiO纳米图案上,避免了边缘处过度的蘑菇状生长或铜区域内出现不需要的成核缺陷。SiO上的膜厚度超过5nm,选择性为100%,是迄今为止报道的最高值之一。该方法提供了一种简化且高精度的自对准制造技术,有利于未来集成电路的进一步缩小尺寸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81b/10372027/e616e4355950/41467_2023_40249_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验