College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
ACS Nano. 2023 Aug 8;17(15):14761-14774. doi: 10.1021/acsnano.3c02783. Epub 2023 Jul 27.
Soybean () is a crop of global significance and has low reliance on N fertilizers due to its biological nitrogen fixation (BNF) capacity, which harvests ambient N as a critical ecosystem service. BNF can be severely compromised by abiotic stresses. Enhancing BNF is increasingly important not only to alleviate global food insecurity but also to reduce the environmental impact of agriculture by decreasing chemical fertilizer inputs. However, this has proven challenging using current genetic modification or bacterial nodulation methods. Here, we demonstrate that a single application of a low dose (10 mg/kg) of molybdenum disulfide nanoparticles (MoS NPs) can enhance soybean BNF and grain yield by 30%, compared with conventional molybdate fertilizer. Unlike molybdate, MoS NPs can more sustainably release Mo, which then is effectively incorporated as a cofactor for the synthesis of nitrogenase and molybdenum-based enzymes that subsequently enhance BNF. Sulfur is also released sustainably and incorporated into biomolecule synthesis, particularly in thiol-containing antioxidants. The superior antioxidant enzyme activity of MoS NPs, together with the thiol compounds, protect the nodules from reactive oxygen species (ROS) damage, delay nodule aging, and maintain the BNF function for a longer term. The multifunctional nature of MoS NPs makes them a highly effective strategy to enhance plant tolerance to abiotic stresses. Given that the physicochemical properties of nanomaterials can be readily modulated, material performance (e.g., ROS capturing capacity) can be further enhanced by several synthesis strategies. This study thus demonstrates that nanotechnology can be an efficient and sustainable approach to enhancing BNF and crop yield under abiotic stress and combating global food insecurity.
大豆是一种具有全球重要意义的作物,由于其具有生物固氮(BNF)能力,能够从环境中吸收氮作为一项关键的生态系统服务,因此对氮肥的依赖程度较低。生物固氮能力会受到非生物胁迫的严重影响。增加生物固氮能力不仅对于缓解全球粮食不安全至关重要,而且对于减少农业对环境的影响(通过减少化肥投入)也非常重要。然而,利用当前的基因改造或细菌结瘤方法来实现这一目标一直具有挑战性。在这里,我们证明,与传统的钼酸盐肥料相比,单次施用低剂量(10mg/kg)的二硫化钼纳米粒子(MoS NPs)可以将大豆的生物固氮和粮食产量提高 30%。与钼酸盐不同的是,MoS NPs 可以更可持续地释放钼,随后钼有效地被整合为合成固氮酶和钼基酶的辅助因子,从而增强生物固氮。硫也可以可持续地释放并整合到生物分子的合成中,特别是在含硫醇的抗氧化剂中。MoS NPs 的优越抗氧化酶活性以及含硫醇化合物,保护根瘤免受活性氧(ROS)的损害,延缓根瘤老化,并保持更长时间的生物固氮功能。MoS NPs 的多功能性质使其成为增强植物对非生物胁迫耐受性的一种非常有效的策略。鉴于纳米材料的物理化学性质可以很容易地进行调节,通过几种合成策略可以进一步提高材料的性能(例如,ROS 捕获能力)。因此,本研究表明,纳米技术可以成为在非生物胁迫下提高生物固氮和作物产量、应对全球粮食不安全的一种有效和可持续的方法。