Nagai Riku, Milam Olivia L, Niwa Tatsuya, Howell William J, Best Jacob A, Yoshida Hideji, Freeburg Carver D, Koomen John M, Fujii Kotaro
Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States.
Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf448.
Eukaryotic ribosomes exhibit higher mRNA translation fidelity than prokaryotic ribosomes, partly due to eukaryote-specific ribosomal RNA (rRNA) insertions. Among these, expansion segment 27L (ES27L) on the 60S subunit enhances fidelity by anchoring methionine aminopeptidase (MetAP) at the nascent protein exit tunnel, accelerating co-translational N-terminal initiator methionine (iMet) processing. However, the mechanisms by which iMet processing influences translation fidelity remain unknown. Using yeast in vitro translation (IVT) systems, we found that inhibiting co-translational iMet processing does not impact ribosome decoding of ongoing peptide synthesis. Instead, our novel method to monitor iMet processing in vivo revealed that ribosomes purified from strains lacking MetAP ribosomal association (ES27L Δb1-4) or major yeast MetAP (Δmap1) increase iMet retention on ribosomal proteins (RPs). Given the densely packed structure of ribosomes, iMet retention on RPs may distort ribosomal structure and impair its function. Indeed, reconstituted IVT systems containing iMet-retaining ribosome subunits from ES27L Δb1-4 strain, combined with translation factors from wild-type strains, elucidated that iMet retention on the 40S ribosomal subunit causes translation errors. Our study demonstrated the critical role of ES27L in adjusting ribosome association of universally conserved MetAP enzyme to fine-tune iMet processing of key RPs, thereby ensuring the structural integrity and functional accuracy of eukaryotic ribosomes.
真核生物核糖体比原核生物核糖体表现出更高的mRNA翻译保真度,部分原因是真核生物特有的核糖体RNA(rRNA)插入。其中,60S亚基上的扩展片段27L(ES27L)通过将甲硫氨酸氨基肽酶(MetAP)锚定在新生蛋白质出口通道,加速共翻译N端起始甲硫氨酸(iMet)的加工,从而提高保真度。然而,iMet加工影响翻译保真度的机制仍不清楚。利用酵母体外翻译(IVT)系统,我们发现抑制共翻译iMet加工不会影响正在进行的肽合成的核糖体解码。相反,我们在体内监测iMet加工的新方法表明,从缺乏MetAP核糖体结合(ES27L Δb1-4)或主要酵母MetAP(Δmap1)的菌株中纯化的核糖体增加了iMet在核糖体蛋白(RPs)上的保留。鉴于核糖体的密集堆积结构,iMet在RPs上的保留可能会扭曲核糖体结构并损害其功能。事实上,含有来自ES27L Δb1-4菌株的保留iMet的核糖体亚基以及来自野生型菌株的翻译因子的重组IVT系统表明,iMet在40S核糖体亚基上的保留会导致翻译错误。我们的研究证明了ES27L在调节普遍保守的MetAP酶的核糖体结合以微调关键RPs的iMet加工方面的关键作用,从而确保真核生物核糖体的结构完整性和功能准确性。