Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA.
Nat Genet. 2023 Aug;55(8):1288-1300. doi: 10.1038/s41588-023-01445-4. Epub 2023 Jul 27.
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
全基因组关联研究已经确定了许多与毛发和皮肤疾病相关的基因座,但识别因果变异需要解析相关细胞类型中的基因调控网络。我们从健康对照和斑秃患者的头皮组织中生成了匹配的单细胞染色质图谱和转录组,鉴定了毛囊龛位的多种细胞类型。通过在多个细胞分辨率水平上对这些数据集进行分析,我们推断出比以前的方法多 50-100%的增强子-基因联系,并表明高度调控基因的总增强子可及性可预测其表达。我们使用这些基因调控图谱来确定雄激素性脱发(AGA)、湿疹和其他复杂特征的病理生物学中涉及的细胞类型、基因和因果变异的优先级。AGA 的全基因组关联研究信号在真皮乳头调节区域中富集,支持这些细胞作为 AGA 发病机制驱动因素的作用。最后,我们训练机器学习模型来提名通过破坏转录因子结合来影响基因表达的单核苷酸多态性,预测 AGA 和湿疹的候选功能性单核苷酸多态性。