Suppr超能文献

使用基于混合智能体模型对新冠病毒肺炎空气传播进行调查:以英国为例

Investigation of airborne spread of COVID-19 using a hybrid agent-based model: a case study of the UK.

作者信息

Rahaman Hafijur, Barik Debashis

机构信息

School of Chemistry, University of Hyderabad, Central University PO, Hyderabad 500046, Telangana, India.

出版信息

R Soc Open Sci. 2023 Jul 26;10(7):230377. doi: 10.1098/rsos.230377. eCollection 2023 Jul.

Abstract

Agent-based models have been proven to be quite useful in understanding and predicting the SARS-CoV-2 virus-originated COVID-19 infection. Person-to-person contact was considered as the main mechanism of viral transmission in these models. However, recent understanding has confirmed that airborne transmission is the main route to infection spread of COVID-19. We have developed a computationally efficient agent-based hybrid model to study the aerial propagation of the virus and subsequent spread of infection. We considered virus, a continuous variable, spreads diffusively in air and members of populations as discrete agents possessing one of the eight different states at a particular time. The transition from one state to another is probabilistic and age linked. Recognizing that population movement is a key aspect of infection spread, the model allows unbiased movement of agents. We benchmarked the model to recapture the temporal stochastic infection count data of the UK. The model investigates various key factors such as movement, infection susceptibility, new variants, recovery rate and duration, incubation period and vaccination on the infection propagation over time. Furthermore, the model was applied to capture the infection spread in Italy and France.

摘要

基于主体的模型已被证明在理解和预测由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的2019冠状病毒病(COVID-19)感染方面非常有用。在这些模型中,人际接触被视为病毒传播的主要机制。然而,最近的认识证实,空气传播是COVID-19感染传播的主要途径。我们开发了一种计算效率高的基于主体的混合模型,以研究病毒的空气传播以及随后的感染传播。我们认为作为连续变量的病毒在空气中扩散传播,而人群成员作为离散主体,在特定时间具有八种不同状态之一。从一种状态到另一种状态的转变是概率性的且与年龄相关。认识到人群流动是感染传播的一个关键方面,该模型允许主体进行无偏差移动。我们对该模型进行了基准测试,以重现英国的时间随机感染计数数据。该模型研究了诸如移动、感染易感性、新变种、康复率和持续时间、潜伏期以及疫苗接种等各种关键因素对感染随时间传播的影响。此外,该模型还被用于捕捉意大利和法国的感染传播情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebc0/10369033/6d1b361a1d5a/rsos230377f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验