Liberman U, Feldman M W
Theor Popul Biol. 1986 Aug;30(1):125-42. doi: 10.1016/0040-5809(86)90028-6.
A deterministic two-locus population genetic model with random mating is studied. The first locus, with two alleles, is subject to mutation and arbitrary viability selection. The second locus, with an arbitrary number of alleles, controls the mutation at the first locus. A class of viability-analogous Hardy-Weinberg equilibria is analyzed in which the selected gene and the modifier locus are in linkage equilibrium. It is shown that at these equilibria a reduction principle for the success of new mutation-modifying alleles is valid. A new allele at the modifier locus succeeds if its marginal average mutation rate is less than the mean mutation rate of the resident modifier allele evaluated at the equilibrium. Internal stability properties of these equilibria are also described.
研究了一个具有随机交配的确定性双位点群体遗传模型。第一个位点有两个等位基因,会发生突变并受到任意的生存力选择。第二个位点有任意数量的等位基因,控制第一个位点的突变。分析了一类类似生存力的哈迪 - 温伯格平衡,其中被选择的基因和修饰位点处于连锁平衡。结果表明,在这些平衡状态下,新的突变修饰等位基因成功的简约原则是有效的。如果修饰位点的新等位基因的边际平均突变率小于在平衡状态下评估的常驻修饰等位基因的平均突变率,那么它就会成功。还描述了这些平衡的内部稳定性特性。