文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SARS-CoV-2 NSP1 在核糖体上诱导 mRNA 切割。

SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome.

机构信息

Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.

出版信息

Nucleic Acids Res. 2023 Sep 8;51(16):8677-8690. doi: 10.1093/nar/gkad627.


DOI:10.1093/nar/gkad627
PMID:37503833
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10484668/
Abstract

In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the non-structural protein NSP1 inhibits translation of host mRNAs by binding to the mRNA entry channel of the ribosome and, together with the 5'-untranslated region (UTR) of the viral mRNAs, allows the evasion of that inhibition. Here, we show that NSP1 mediates endonucleolytic cleavages of both host and viral mRNAs in the 5'UTR, but with different cleavage patterns. The first pattern is observed in host mRNAs with cleavages interspersed regularly and close to the 5' cap (6-11 nt downstream of the cap). Those cleavage positions depend more on the position relative to the 5' cap than on the sequence itself. The second cleavage pattern occurs at high NSP1 concentrations and only in SARS-CoV-2 RNAs, with the cleavages clustered at positions 45, 46 and 49. Both patterns of cleavage occur with the mRNA and NSP1 bound to the ribosome, with the SL1 hairpin at the 5' end sufficient to protect from NSP1-mediated degradation at low NSP1 concentrations. We show further that the N-terminal domain of NSP1 is necessary and sufficient for efficient cleavage. We suggest that in the ribosome-bound NSP1 protein the catalytic residues of the N-terminal domain are unmasked by the remodelling of the α1- and α2-helices of the C-terminal domain.

摘要

在严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 中,非结构蛋白 NSP1 通过与核糖体的 mRNA 进入通道结合,抑制宿主 mRNAs 的翻译,并与病毒 mRNAs 的 5'-非翻译区 (UTR) 一起,逃避这种抑制。在这里,我们表明 NSP1 介导宿主和病毒 mRNAs 在 5'UTR 中的内切酶切割,但具有不同的切割模式。第一种模式发生在宿主 mRNAs 中,切割位点均匀且靠近 5'帽(帽下游 6-11nt)。这些切割位置更多地取决于相对于 5'帽的位置,而不是序列本身。第二种切割模式发生在高浓度的 NSP1 下,仅在 SARS-CoV-2 RNA 中,切割位点聚集在位置 45、46 和 49。这两种切割模式都发生在与核糖体结合的 mRNA 和 NSP1 上,5'端的 SL1 发夹足以在低浓度的 NSP1 下保护免受 NSP1 介导的降解。我们进一步表明,NSP1 的 N 端结构域对于有效切割是必需和充分的。我们认为,在核糖体结合的 NSP1 蛋白中,N 端结构域的催化残基通过 C 端结构域的α1-和α2-螺旋的重排而暴露。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/b8d023ad9f06/gkad627fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/6aa8cc2e1e96/gkad627figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/e78b2700ce86/gkad627fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/419177765ae6/gkad627fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/408294a3b400/gkad627fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/f24721d92e07/gkad627fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/3884b84cf6ea/gkad627fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/ad1da67a169a/gkad627fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/50480842f2f1/gkad627fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/5f37b4d97f3f/gkad627fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/b8d023ad9f06/gkad627fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/6aa8cc2e1e96/gkad627figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/e78b2700ce86/gkad627fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/419177765ae6/gkad627fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/408294a3b400/gkad627fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/f24721d92e07/gkad627fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/3884b84cf6ea/gkad627fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/ad1da67a169a/gkad627fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/50480842f2f1/gkad627fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/5f37b4d97f3f/gkad627fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebb/10484668/b8d023ad9f06/gkad627fig9.jpg

相似文献

[1]
SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome.

Nucleic Acids Res. 2023-9-8

[2]
Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation.

Proc Natl Acad Sci U S A. 2021-2-9

[3]
Correlated sequence signatures are present within the genomic 5'UTR RNA and NSP1 protein in coronaviruses.

RNA. 2022-5

[4]
SARS-CoV-2 Nsp1 mediated mRNA degradation requires mRNA interaction with the ribosome.

RNA Biol. 2023-1

[5]
SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

PLoS Pathog. 2011-12-8

[6]
An Evolutionarily Conserved Strategy for Ribosome Binding and Host Translation Inhibition by β-coronavirus Non-structural Protein 1.

J Mol Biol. 2023-10-15

[7]
The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression.

RNA. 2022-5

[8]
Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA.

J Virol. 2012-8-1

[9]
Clinically observed deletions in SARS-CoV-2 Nsp1 affect its stability and ability to inhibit translation.

FEBS Lett. 2022-5

[10]
Targeting stem-loop 1 of the SARS-CoV-2 5' UTR to suppress viral translation and Nsp1 evasion.

Proc Natl Acad Sci U S A. 2022-3-1

引用本文的文献

[1]
Characterization of Gene Expression Suppression by Bovine Coronavirus Non-Structural Protein 1.

Viruses. 2025-7-13

[2]
Screening bacterial effectors and human virus proteins in yeast to identify host factors driving tombusvirus RNA recombination: a role for autophagy and membrane phospholipid content.

J Virol. 2025-6-17

[3]
Live attenuated SARS-CoV-2 vaccine OTS-228 demonstrates efficacy, safety, and stability in preclinical model.

NPJ Vaccines. 2025-5-23

[4]
The differential effect of SARS-CoV-2 NSP1 on mRNA translation and stability reveals new insights linking ribosome recruitment, codon usage, and virus evolution.

Nucleic Acids Res. 2025-3-20

[5]
SARS-CoV-2 nsp1 mediates broad inhibition of translation in mammals.

bioRxiv. 2025-1-15

[6]
The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression.

FEMS Microbiol Rev. 2024-9-18

[7]
Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects.

Front Cell Infect Microbiol. 2024

[8]
SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease.

Biometals. 2024-10

[9]
The art of hijacking: how Nsp1 impacts host gene expression during coronaviral infections.

Biochem Soc Trans. 2024-2-28

[10]
Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1.

Front Cell Infect Microbiol. 2024-2-5

本文引用的文献

[1]
Biochemical and HDX Mass Spectral Characterization of the SARS-CoV-2 Nsp1 Protein.

Biochemistry. 2023-6-6

[2]
Innate immune evasion strategies of SARS-CoV-2.

Nat Rev Microbiol. 2023-3

[3]
Structural insights into the activity regulation of full-length non-structural protein 1 from SARS-CoV-2.

Structure. 2023-2-2

[4]
Viral and cellular translation during SARS-CoV-2 infection.

FEBS Open Bio. 2022-9

[5]
Correlated sequence signatures are present within the genomic 5'UTR RNA and NSP1 protein in coronaviruses.

RNA. 2022-5

[6]
Dissecting the early COVID-19 cases in Wuhan.

Science. 2021-12-3

[7]
The N-terminal domain of SARS-CoV-2 nsp1 plays key roles in suppression of cellular gene expression and preservation of viral gene expression.

Cell Rep. 2021-10-19

[8]
SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors.

J Virol. 2021-6-10

[9]
SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis.

Nature. 2021-6

[10]
Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response.

Cell Host Microbe. 2021-3-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索