Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.
J Mol Biol. 2023 Oct 15;435(20):168259. doi: 10.1016/j.jmb.2023.168259. Epub 2023 Sep 1.
An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Non-structural protein 1 (Nsp1), which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-Coronaviruses (β-CoV) inhibits translation through ribosome binding. The C-terminal domain (CTD) of all β-CoV Nsp1s confers high-affinity ribosome binding despite low sequence conservation. Modeling of interactions of four Nsp1s with the ribosome identified the few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a cis-acting viral RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aid future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2 and related human-pathogenic β-CoVs. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.
SARS-CoV-2 和相关冠状病毒的一个重要致病性因素是非结构蛋白 1(Nsp1),它抑制宿主基因表达并阻碍抗病毒信号。SARS-CoV-2 Nsp1 通过与核糖体结合来抑制翻译,通过 mRNA 置换诱导宿主 mRNA 的降解。在这里,我们表明,Nsp1 依赖性宿主关闭在多种冠状病毒中是保守的,但只有β-冠状病毒(β-CoV)的 Nsp1 通过与核糖体结合来抑制翻译。所有β-CoV Nsp1 的 C 末端结构域(CTD)尽管序列保守性低,但赋予了高亲和力的核糖体结合。四种 Nsp1 与核糖体相互作用的建模确定了少数绝对保守的氨基酸,这些氨基酸与表面电荷的总体保守性一起,构成了β-CoV Nsp1 核糖体结合域。与之前的模型相反,Nsp1 核糖体结合域不是一种有效的翻译抑制剂。相反,Nsp1-CTD 可能通过招募 Nsp1 的 N 端“效应”结构域来发挥作用。最后,我们表明,顺式作用的病毒 RNA 元件共同进化以微调 SARS-CoV-2 Nsp1 的功能,但不能为相关病毒的 Nsp1 提供类似的保护。总之,我们的工作为 Nsp1 依赖核糖体的宿主关闭功能的多样性和保守性提供了新的见解,这些知识可能有助于未来针对 SARS-CoV-2 和相关人类致病性β-CoV 的 Nsp1 的药理学靶向。我们的研究还例证了如何比较高度差异的 Nsp1 变体可以帮助剖析这种多功能病毒蛋白的不同模式。