Suppr超能文献

基于翅膀运动学的昆虫启发式飞行系统飞行控制策略:深度强化学习为扑翼微型飞行器提供解决方案并启发控制器设计。

Wing Kinematics-Based Flight Control Strategy in Insect-Inspired Flight Systems: Deep Reinforcement Learning Gives Solutions and Inspires Controller Design in Flapping MAVs.

作者信息

Xue Yujing, Cai Xuefei, Xu Ru, Liu Hao

机构信息

Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

出版信息

Biomimetics (Basel). 2023 Jul 7;8(3):295. doi: 10.3390/biomimetics8030295.

Abstract

Flying insects exhibit outperforming stability and control via continuous wing flapping even under severe disturbances in various conditions of wind gust and turbulence. While conventional linear proportional derivative (PD)-based controllers are widely employed in insect-inspired flight systems, they usually fail to deal with large perturbation conditions in terms of the 6-DoF nonlinear control strategy. Here we propose a novel wing kinematics-based controller, which is optimized based on deep reinforcement learning (DRL) to stabilize bumblebee hovering under large perturbations. A high-fidelity Open AI Gym environment is established through coupling a CFD data-driven aerodynamic model and a 6-DoF flight dynamic model. The control policy with an action space of 4 is optimized using the off-policy Soft Actor-Critic (SAC) algorithm with automating entropy adjustment, which is verified to be of feasibility and robustness to achieve fast stabilization of the bumblebee hovering flight under full 6-DoF large disturbances. The 6-DoF wing kinematics-based DRL control strategy may provide an efficient autonomous controller design for bioinspired flapping-wing micro air vehicles.

摘要

即使在阵风及湍流等各种条件下受到严重干扰时,飞行昆虫通过持续拍打翅膀仍能展现出卓越的稳定性和控制能力。虽然传统的基于线性比例微分(PD)的控制器在受昆虫启发的飞行系统中被广泛应用,但就六自由度非线性控制策略而言,它们通常难以应对大扰动情况。在此,我们提出一种基于新型机翼运动学的控制器,该控制器基于深度强化学习(DRL)进行优化,以在大扰动下稳定大黄蜂的悬停。通过将计算流体动力学(CFD)数据驱动的空气动力学模型与六自由度飞行动力学模型相耦合,建立了一个高保真的OpenAI Gym环境。使用具有自动熵调整功能的离策略软演员评论家(SAC)算法对动作空间为4的控制策略进行优化,经验证,该策略在六自由度全大扰动下实现大黄蜂悬停飞行的快速稳定方面具有可行性和鲁棒性。基于六自由度机翼运动学的DRL控制策略可为受生物启发的扑翼微型飞行器提供一种高效的自主控制器设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e2/10807585/6638662829e4/biomimetics-08-00295-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验