Suppr超能文献

基于YOLOv8的五种相关皮肤镜结构自动定位以改善诊断

Automatic Localization of Five Relevant Dermoscopic Structures Based on YOLOv8 for Diagnosis Improvement.

作者信息

Chabi Adjobo Esther, Sanda Mahama Amadou Tidjani, Gouton Pierre, Tossa Joël

机构信息

Imagerie et Vision Artificielle (ImVia), University of Bourgogne Franche-Comté, 21078 Dijon, France.

Institut de Mathématiques et de Sciences Physiques (IMSP), University of Abomey-Calavi, Abomey-Calavi BP 2549, Benin.

出版信息

J Imaging. 2023 Jul 21;9(7):148. doi: 10.3390/jimaging9070148.

Abstract

The automatic detection of dermoscopic features is a task that provides the specialists with an image with indications about the different patterns present in it. This information can help them fully understand the image and improve their decisions. However, the automatic analysis of dermoscopic features can be a difficult task because of their small size. Some work was performed in this area, but the results can be improved. The objective of this work is to improve the precision of the automatic detection of dermoscopic features. To achieve this goal, an algorithm named yolo-dermoscopic-features is proposed. The algorithm consists of four points: (i) generate annotations in the JSON format for supervised learning of the model; (ii) propose a model based on the latest version of Yolo; (iii) pre-train the model for the segmentation of skin lesions; (iv) train five models for the five dermoscopic features. The experiments are performed on the ISIC 2018 task2 dataset. After training, the model is evaluated and compared to the performance of two methods. The proposed method allows us to reach average performances of 0.9758, 0.954, 0.9724, 0.938, and 0.9692, respectively, for the Dice similarity coefficient, Jaccard similarity coefficient, precision, recall, and average precision. Furthermore, comparing to other methods, the proposed method reaches a better Jaccard similarity coefficient of 0.954 and, thus, presents the best similarity with the annotations made by specialists. This method can also be used to automatically annotate images and, therefore, can be a solution to the lack of features annotation in the dataset.

摘要

皮肤镜特征的自动检测是一项为专家提供包含其中不同模式指示的图像的任务。这些信息可以帮助他们充分理解图像并改进决策。然而,由于皮肤镜特征尺寸较小,其自动分析可能是一项艰巨的任务。该领域已经开展了一些工作,但结果仍可改进。这项工作的目标是提高皮肤镜特征自动检测的精度。为实现这一目标,提出了一种名为yolo - 皮肤镜特征的算法。该算法包括四个要点:(i)生成用于模型监督学习的JSON格式注释;(ii)基于最新版本的Yolo提出一个模型;(iii)对模型进行皮肤病变分割的预训练;(iv)针对五种皮肤镜特征训练五个模型。实验在ISIC 2018任务2数据集上进行。训练后,对模型进行评估并与两种方法的性能进行比较。所提出的方法分别使我们在骰子相似系数、杰卡德相似系数、精度、召回率和平均精度方面达到0.9758、0.954、0.9724、0.938和0.9692的平均性能。此外,与其他方法相比,所提出的方法达到了更好的杰卡德相似系数0.954,因此与专家制作的注释具有最佳相似性。该方法还可用于自动注释图像,因此可以解决数据集中特征注释不足的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c118/10381143/14f9d38cc318/jimaging-09-00148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验