Suppr超能文献

基于深度学习的腰椎磁共振图像中椎间盘突出的自动检测与分级

Deep learning-based automatic detection and grading of disk herniation in lumbar magnetic resonance images.

作者信息

Guo Yan, Huang Xiaoxiang, Chen Wei, Nakamoto Ichiro, Zhuang Weiqing, Chen Hua, Feng Jie, Wu Jianfeng

机构信息

School of Internet Economics and Business, Fujian University of Technology, Fuzhou, 350014, China.

Department of Radiology, Pingtan Comprehensive Experimentation Area Hospital, Pingtan, 350400, China.

出版信息

Sci Rep. 2025 Jul 9;15(1):24700. doi: 10.1038/s41598-025-10401-7.

Abstract

Magnetic resonance imaging of the lumbar spine is a key technique for clarifying the cause of disease. The greatest challenges today are the repetitive and time-consuming process of interpreting these complex MR images and the problem of unequal diagnostic results from physicians with different levels of experience. To address these issues, in this study, an improved YOLOv8 model (GE-YOLOv8) that combines a gradient search module and efficient channel attention was developed. To address the difficulty of intervertebral disc feature extraction, the GS module was introduced into the backbone network, which enhances the feature learning ability for the key structures through the gradient splitting strategy, and the number of parameters was reduced by 2.1%. The ECA module optimizes the weights of the feature channels and enhances the sensitivity of detection for small-target lesions, and the mAP50 was improved by 4.4% compared with that of YOLOv8. GE-YOLOv8 demonstrated the significance of this innovation on the basis of a P value <.001, with YOLOv8 as the baseline. The experimental results on a dataset from the Pingtan Branch of Union Hospital of Fujian Medical University and an external test dataset show that the model has excellent accuracy.

摘要

腰椎磁共振成像是明确疾病病因的关键技术。当今最大的挑战是解读这些复杂磁共振图像的过程重复且耗时,以及不同经验水平的医生诊断结果不一致的问题。为解决这些问题,本研究开发了一种改进的YOLOv8模型(GE-YOLOv8),它结合了梯度搜索模块和高效通道注意力机制。为解决椎间盘特征提取的困难,将GS模块引入主干网络,通过梯度分裂策略增强了对关键结构的特征学习能力,参数数量减少了2.1%。ECA模块优化了特征通道的权重,提高了对小目标病变检测的灵敏度,与YOLOv8相比,mAP50提高了4.4%。以YOLOv8为基线,GE-YOLOv8在P值<0.001的基础上证明了这一创新的意义。福建医科大学附属协和医院平潭分院数据集和外部测试数据集的实验结果表明,该模型具有出色的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f9/12241562/1d5634b87eb9/41598_2025_10401_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验