文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

醌类作为神经保护剂。

Quinones as Neuroprotective Agents.

作者信息

Cores Ángel, Carmona-Zafra Noelia, Clerigué José, Villacampa Mercedes, Menéndez J Carlos

机构信息

Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain.

出版信息

Antioxidants (Basel). 2023 Jul 20;12(7):1464. doi: 10.3390/antiox12071464.


DOI:10.3390/antiox12071464
PMID:37508002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10376830/
Abstract

Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.

摘要

醌类化合物在神经退行性疾病的治疗中原则上可被视为一把双刃剑,因为它们通常具有细胞保护作用,但由于生物分子的共价修饰和氧化还原修饰,也可能具有细胞毒性。然而,低剂量的中等亲电醌类化合物通常具有细胞保护作用,主要是因为它们能够激活Keap1/Nrf2通路,从而诱导解毒酶的表达。一些天然醌类化合物在重要的生理过程中发挥着相关作用。其中之一是辅酶Q,它作为线粒体呼吸链中的质子和电子载体,参与细胞能量产生所涉及的氧化磷酸化过程,并对阿尔茨海默病和帕金森病显示出神经保护作用。其他可被视为辅酶Q类似物的神经保护醌类化合物有艾地苯醌、米托醌和质体醌。其他具有神经保护活性的内源性醌类化合物包括生育酚衍生的醌类化合物,最显著的是瓦替醌,以及维生素K。还讨论了最后一组具有神经保护活性的非内源性醌类化合物,包括紫铆因、APX-3330、大麻素衍生的醌类化合物、星芒醌和其他吲哚基醌类化合物、吡咯喹啉醌及其类似物、格尔德霉素及其类似物、利福平醌、美莫醌以及一些将醌类化合物与氨基酸、胆碱酯酶抑制剂和非甾体抗炎药结合的杂合结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/2c1b54ea869e/antioxidants-12-01464-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7e1b96e8bc0c/antioxidants-12-01464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7d3374b8bc6d/antioxidants-12-01464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/21107a62ad81/antioxidants-12-01464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7ea55733f8a3/antioxidants-12-01464-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c98d9b4fffe3/antioxidants-12-01464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/5d7d548bdeab/antioxidants-12-01464-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/1cab0fb24c86/antioxidants-12-01464-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/273af7a4fa7c/antioxidants-12-01464-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/63a01af11a6b/antioxidants-12-01464-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/b94c2d0d9709/antioxidants-12-01464-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c27c96debda6/antioxidants-12-01464-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c0e34552187a/antioxidants-12-01464-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/d4782989f839/antioxidants-12-01464-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c09f1836f40a/antioxidants-12-01464-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/fbf6496b3758/antioxidants-12-01464-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/13b712b3c940/antioxidants-12-01464-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/33f300b51071/antioxidants-12-01464-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c13d3a09ba8e/antioxidants-12-01464-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/64a6cd6d3177/antioxidants-12-01464-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/3bf99bdeb301/antioxidants-12-01464-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/91b889f18fbe/antioxidants-12-01464-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/399ba84ed078/antioxidants-12-01464-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/a7729574d92f/antioxidants-12-01464-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/cf0fda7356f0/antioxidants-12-01464-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/e9957b780fd5/antioxidants-12-01464-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/ebfab120c362/antioxidants-12-01464-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/e62533f6d973/antioxidants-12-01464-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/3a6089b4ac3f/antioxidants-12-01464-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/69f32c3d437c/antioxidants-12-01464-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/f8b192cb6009/antioxidants-12-01464-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/2c1b54ea869e/antioxidants-12-01464-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7e1b96e8bc0c/antioxidants-12-01464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7d3374b8bc6d/antioxidants-12-01464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/21107a62ad81/antioxidants-12-01464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/7ea55733f8a3/antioxidants-12-01464-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c98d9b4fffe3/antioxidants-12-01464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/5d7d548bdeab/antioxidants-12-01464-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/1cab0fb24c86/antioxidants-12-01464-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/273af7a4fa7c/antioxidants-12-01464-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/63a01af11a6b/antioxidants-12-01464-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/b94c2d0d9709/antioxidants-12-01464-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c27c96debda6/antioxidants-12-01464-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c0e34552187a/antioxidants-12-01464-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/d4782989f839/antioxidants-12-01464-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c09f1836f40a/antioxidants-12-01464-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/fbf6496b3758/antioxidants-12-01464-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/13b712b3c940/antioxidants-12-01464-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/33f300b51071/antioxidants-12-01464-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/c13d3a09ba8e/antioxidants-12-01464-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/64a6cd6d3177/antioxidants-12-01464-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/3bf99bdeb301/antioxidants-12-01464-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/91b889f18fbe/antioxidants-12-01464-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/399ba84ed078/antioxidants-12-01464-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/a7729574d92f/antioxidants-12-01464-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/cf0fda7356f0/antioxidants-12-01464-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/e9957b780fd5/antioxidants-12-01464-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/ebfab120c362/antioxidants-12-01464-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/e62533f6d973/antioxidants-12-01464-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/3a6089b4ac3f/antioxidants-12-01464-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/69f32c3d437c/antioxidants-12-01464-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/f8b192cb6009/antioxidants-12-01464-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9177/10376830/2c1b54ea869e/antioxidants-12-01464-g031.jpg

相似文献

[1]
Quinones as Neuroprotective Agents.

Antioxidants (Basel). 2023-7-20

[2]
Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone.

J Infect Public Health. 2020-10-14

[3]
Quinones bearing non-steroidal anti-inflammatory fragments as multitarget ligands for Alzheimer's disease.

Bioorg Med Chem Lett. 2013-10-5

[4]
NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels.

PLoS One. 2011-3-31

[5]
Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues.

Curr Med Chem. 2011

[6]
The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson's disease.

Neurochem Int. 2022-6

[7]
An optimized pyrimidinol multifunctional radical quencher.

ACS Med Chem Lett. 2013-5-28

[8]
Dual neuroprotective pathways of a pro-electrophilic compound via HSF-1-activated heat-shock proteins and Nrf2-activated phase 2 antioxidant response enzymes.

J Neurochem. 2011-9-21

[9]
Idebenone Ameliorates Rotenone-Induced Parkinson's Disease in Rats Through Decreasing Lipid Peroxidation.

Neurochem Res. 2021-3

[10]
Redox regulation of mitochondrial functional activity by quinones.

Physiol Int. 2016-12

引用本文的文献

[1]
Plumbagin Improves Cognitive Function via Attenuating Hippocampal Inflammation in Valproic Acid-Induced Autism Model.

Brain Sci. 2025-7-27

[2]
Expediting multiple biological properties of main bioactive compounds of Mentha pulegium L.

AMB Express. 2025-7-14

[3]
Multitarget Compounds Designed for Alzheimer, Parkinson, and Huntington Neurodegeneration Diseases.

Pharmaceuticals (Basel). 2025-6-1

[4]
Location and Dynamics of Nymphaeol A in a Complex Membrane.

Membranes (Basel). 2025-5-28

[5]
Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design.

Pharmaceuticals (Basel). 2025-4-22

[6]
Toxicity profiling and HR-LCMS analysis of leaf methanolic extract exhibiting anti-inflammatory activity.

3 Biotech. 2025-6

[7]
The Impact of a Quinone Scaffold on Thermo-TRPs Modulation by Dimethylheptyl Phytocannabinoids.

Int J Mol Sci. 2025-3-17

[8]
Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review.

Molecules. 2025-2-3

[9]
Neuroprotective effects of phytochemicals through autophagy modulation in ischemic stroke.

Inflammopharmacology. 2025-2

[10]
Mitochondrial dysfunction in Alzheimer's disease: a key frontier for future targeted therapies.

Front Immunol. 2025-1-14

本文引用的文献

[1]
Purpurin ameliorates D-galactose-induced aging phenotypes in mouse hippocampus by reducing inflammatory responses.

Neurochem Int. 2023-7

[2]
Coenzyme Q10 and Dementia: A Systematic Review.

Antioxidants (Basel). 2023-2-20

[3]
Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448.

ACS Chem Neurosci. 2023-3-15

[4]
Hallmarks of neurodegenerative diseases.

Cell. 2023-2-16

[5]
Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings.

Antioxidants (Basel). 2023-1-5

[6]
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease.

Pharmaceuticals (Basel). 2022-12-14

[7]
Quinones as an Efficient Molecular Scaffold in the Antibacterial/Antifungal or Antitumoral Arsenal.

Int J Mol Sci. 2022-11-15

[8]
Challenges and progress in research, diagnostics, and therapeutics in Alzheimer's disease and related dementias.

Alzheimers Dement (N Y). 2022-7-26

[9]
Idebenone regulates sirt1/Nrf2/TNF-α pathway with inhibition of oxidative stress, inflammation, and apoptosis in testicular torsion/detorsion in juvenile rats.

Hum Exp Toxicol. 2022

[10]
The Ascension of Targeted Covalent Inhibitors.

J Med Chem. 2022-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索