Yao Chengzhang, Liu Xiangpeng, Wang Jilin, Cheng Yuhua
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China.
Shanghai Research Institute of Microelectronics, Peking University, Shanghai 201203, China.
Sensors (Basel). 2024 May 16;24(10):3180. doi: 10.3390/s24103180.
Advances in deep learning and computer vision have overcome many challenges inherent in the field of autonomous intelligent vehicles. To improve the detection accuracy and efficiency of EdgeBoard intelligent vehicles, we proposed an optimized design of EdgeBoard based on our PP-YOLOE+ model. This model innovatively introduces a composite backbone network, incorporating deep residual networks, feature pyramid networks, and RepResBlock structures to enrich environmental perception capabilities through the advanced analysis of sensor data. The incorporation of an efficient task-aligned head (ET-head) in the PP-YOLOE+ framework marks a pivotal innovation for precise interpretation of sensor information, addressing the interplay between classification and localization tasks with high effectiveness. Subsequent refinement of target regions by detection head units significantly sharpens the system's ability to navigate and adapt to diverse driving scenarios. Our innovative hardware design, featuring a custom-designed mainboard and drive board, is specifically tailored to enhance the computational speed and data processing capabilities of intelligent vehicles. Furthermore, the optimization of our Pos-PID control algorithm allows the system to dynamically adjust to complex driving scenarios, significantly enhancing vehicle safety and reliability. Besides, our methodology leverages the latest technologies in edge computing and dynamic label assignment, enhancing intelligent vehicles' operations through seamless sensor integration. Our custom dataset, specifically designed for this study, includes 4777 images captured by intelligent vehicles under a variety of environmental and lighting conditions. The dataset features diverse scenarios and objects pertinent to autonomous driving, such as pedestrian crossings and traffic signs, ensuring a comprehensive evaluation of the model's performance. We conducted extensive testing of our model on this dataset to thoroughly assess sensor performance. Evaluated against metrics including accuracy, error rate, precision, recall, mean average precision (mAP), and F1-score, our findings reveal that the model achieves a remarkable accuracy rate of 99.113%, an mAP of 54.9%, and a real-time detection frame rate of 192 FPS, all within a compact parameter footprint of just 81 MB. These results demonstrate the superior capability of our PP-YOLOE+ model to integrate sensor data, achieving an optimal balance between detection accuracy and computational speed compared with existing algorithms.
深度学习和计算机视觉的进展克服了自主智能车辆领域固有的许多挑战。为了提高EdgeBoard智能车辆的检测精度和效率,我们基于PP-YOLOE+模型提出了一种EdgeBoard的优化设计。该模型创新性地引入了复合主干网络,融合了深度残差网络、特征金字塔网络和RepResBlock结构,通过对传感器数据的高级分析来丰富环境感知能力。在PP-YOLOE+框架中加入高效任务对齐头(ET-head)标志着在精确解释传感器信息方面的一项关键创新,有效解决了分类和定位任务之间的相互作用。检测头单元随后对目标区域的细化显著提升了系统在各种驾驶场景中的导航和适应能力。我们创新的硬件设计,包括定制设计的主板和驱动板,专门用于提高智能车辆的计算速度和数据处理能力。此外,我们的位置比例积分微分(Pos-PID)控制算法的优化使系统能够动态适应复杂的驾驶场景,显著提高了车辆的安全性和可靠性。此外,我们的方法利用了边缘计算和动态标签分配的最新技术,通过无缝的传感器集成增强了智能车辆的运行。我们专门为这项研究设计的自定义数据集包括智能车辆在各种环境和光照条件下拍摄的4777张图像。该数据集具有与自动驾驶相关的各种场景和物体,如人行横道和交通标志,确保对模型性能进行全面评估。我们在这个数据集上对模型进行了广泛测试,以全面评估传感器性能。根据准确率、错误率、精确率召回率、平均精度均值(mAP)和F1分数等指标进行评估,我们的研究结果表明,该模型在仅81MB的紧凑参数占用空间内,实现了99.113%的显著准确率、54.9%的mAP和192帧每秒的实时检测帧率。这些结果证明了我们的PP-YOLOE+模型在集成传感器数据方面的卓越能力,与现有算法相比,在检测精度和计算速度之间实现了最佳平衡。