文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纳米材料的靶向药物递送在临床前癌症诊断与治疗中的最新进展

Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics.

作者信息

Tiwari Harshita, Rai Nilesh, Singh Swati, Gupta Priyamvada, Verma Ashish, Singh Akhilesh Kumar, Salvi Prafull, Singh Santosh Kumar, Gautam Vibhav

机构信息

Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.

Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.

出版信息

Bioengineering (Basel). 2023 Jun 25;10(7):760. doi: 10.3390/bioengineering10070760.


DOI:10.3390/bioengineering10070760
PMID:37508788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10376516/
Abstract

Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.

摘要

纳米肿瘤学是生物医学研究与工程的一个分支,专注于在癌症诊断和治疗中应用纳米技术。纳米材料因其微小尺寸和超高特异性而在肿瘤学领域得到广泛应用。多种纳米载体,如树枝状大分子、胶束、聚乙二醇化脂质体和聚合物纳米颗粒,被用于促进抗癌药物在靶肿瘤部位的高效运输。使用量子点对癌细胞进行实时标记和监测对于确定治疗所需的治疗水平至关重要。药物通过被动或主动方式靶向肿瘤部位。被动靶向利用肿瘤微环境以及增强的渗透和滞留效应,而主动靶向则涉及使用配体包被的纳米颗粒。纳米技术正通过肿瘤成像检测癌症特异性生物标志物来诊断癌症早期阶段。纳米技术在癌症治疗中的应用包括光诱导纳米敏化剂、逆转多药耐药性以及实现CRISPR/Cas9和RNA分子的高效递送用于治疗应用。然而,尽管纳米肿瘤学最近取得了进展,但仍有必要更深入地研究设计和应用纳米颗粒以改善癌症诊断的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/caa7cd251490/bioengineering-10-00760-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/f89ea22c16df/bioengineering-10-00760-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/54f52a8215ae/bioengineering-10-00760-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/180c93bc6d89/bioengineering-10-00760-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/caa7cd251490/bioengineering-10-00760-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/f89ea22c16df/bioengineering-10-00760-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/54f52a8215ae/bioengineering-10-00760-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/180c93bc6d89/bioengineering-10-00760-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3e/10376516/caa7cd251490/bioengineering-10-00760-g004.jpg

相似文献

[1]
Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics.

Bioengineering (Basel). 2023-6-25

[2]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[3]
Nanotechnology: an evidence-based analysis.

Ont Health Technol Assess Ser. 2006

[4]
The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.

Curr Med Chem. 2018

[5]
Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy.

Curr Drug Metab. 2019

[6]
Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives.

Int J Nanomedicine. 2021

[7]
Nanosize drug delivery system.

Curr Pharm Biotechnol. 2013

[8]
Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management.

Biomedicines. 2020-9-12

[9]
Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.

Semin Cancer Biol. 2021-2

[10]
Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world.

Biomed Pharmacother. 2017-11-21

引用本文的文献

[1]
How Effective are Key Phytocompound Carrying Polysaccharide Nanocarriers as Anti-Breast Cancer Therapy? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2025-6-27

[2]
The Evolving Landscape of Ovarian Cancer: Innovations in Biotechnology and Artificial Intelligence- Based Screening and Treatment.

Curr Treat Options Oncol. 2025-6-9

[3]
The Toxicological Profile of Active Pharmaceutical Ingredients-Containing Nanoparticles: Classification, Mechanistic Pathways, and Health Implications.

Pharmaceuticals (Basel). 2025-5-9

[4]
Targeted delivery of doxorubicin to B-cell lymphoma using monoclonal antibody-functionalized Chaetoceros biosilica.

Sci Rep. 2025-5-13

[5]
Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics.

J Nanobiotechnology. 2025-5-7

[6]
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.

Pharmaceutics. 2025-2-24

[7]
Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations.

Discov Oncol. 2025-3-22

[8]
A comprehensive review on the latest advances of dimeric anticancer prodrugs.

Future Med Chem. 2025-3

[9]
A quality-by-design approach to develop abemaciclib solid lipid nanoparticles for targeting breast cancer cell lines.

Ther Deliv. 2025-2

[10]
Advancing Cancer Drug Delivery with Nanoparticles: Challenges and Prospects in Mathematical Modeling for In Vivo and In Vitro Systems.

Cancers (Basel). 2025-1-9

本文引用的文献

[1]
Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance.

Genes Dis. 2023-1-14

[2]
Circulating and non-circulating proteins and nucleic acids as biomarkers and therapeutic molecules in ovarian cancer.

Genes Dis. 2022-8-5

[3]
Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles.

Med Res Rev. 2024-1

[4]
Chitosan-coated ultrapure silicon nanoparticles produced by laser ablation: biomedical potential in nano-oncology as a tumor-targeting nanosystem.

Nanoscale Adv. 2023-5-1

[5]
Galactosylated hydroxyl-polyamidoamine dendrimer targets hepatocytes and improves therapeutic outcomes in a severe model of acetaminophen poisoning-induced liver failure.

Bioeng Transl Med. 2023-2-8

[6]
Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy.

Acta Pharm Sin B. 2023-4

[7]
Integration of TADF Photosensitizer as "Electron Pump" and BSA as "Electron Reservoir" for Boosting Type I Photodynamic Therapy.

J Am Chem Soc. 2023-4-12

[8]
Zwitterionic Targeting Doxorubicin -Loaded Micelles Assembled by Amphiphilic Dendrimers with Enhanced Antitumor Performance.

Langmuir. 2023-4-4

[9]
Cancer nanomedicine: a review of nano-therapeutics and challenges ahead.

RSC Adv. 2023-3-14

[10]
A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy.

Crit Rev Oncol Hematol. 2023-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索