Suppr超能文献

通过自行设计的分子文库的计算机筛选鉴定出一种潜在的 SARS-CoV-2 主要蛋白酶抑制剂。

Identification of a Putative SARS-CoV-2 Main Protease Inhibitor through In Silico Screening of Self-Designed Molecular Library.

机构信息

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.

School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.

出版信息

Int J Mol Sci. 2023 Jul 13;24(14):11390. doi: 10.3390/ijms241411390.

Abstract

There have been outbreaks of SARS-CoV-2 around the world for over three years, and its variants continue to evolve. This has become a major global health threat. The main protease (M, also called 3CL) plays a key role in viral replication and proliferation, making it an attractive drug target. Here, we have identified a novel potential inhibitor of M, by applying the virtual screening of hundreds of nilotinib-structure-like compounds that we designed and synthesized. The screened compounds were assessed using SP docking, XP docking, MM-GBSA analysis, IFD docking, MD simulation, ADME/T prediction, and then an enzymatic assay in vitro. We finally identified the compound V291 as a potential SARS-CoV-2 M inhibitor, with a high docking affinity and enzyme inhibitory activity. Moreover, the docking results indicate that His41 is a favorable amino acid for pi-pi interactions, while Glu166 can participate in salt-bridge formation with the protonated primary or secondary amines in the screened molecules. Thus, the compounds reported here are capable of engaging the key amino acids His41 and Glu166 in ligand-receptor interactions. A pharmacophore analysis further validates this assertion.

摘要

新冠病毒已经在全球范围内肆虐了三年多,其变体仍在不断进化。这已成为一个重大的全球健康威胁。主蛋白酶(M,也称为 3CL)在病毒复制和增殖中起着关键作用,使其成为一个有吸引力的药物靶点。在这里,我们通过对数百种我们设计和合成的尼洛替尼结构类似物进行虚拟筛选,鉴定出一种新型潜在的 M 抑制剂。筛选出的化合物通过 SP 对接、XP 对接、MM-GBSA 分析、IFD 对接、MD 模拟、ADME/T 预测以及体外酶活性测定进行评估。最后,我们确定化合物 V291 是一种潜在的 SARS-CoV-2 M 抑制剂,具有较高的对接亲和力和酶抑制活性。此外,对接结果表明 His41 是有利于 pi-pi 相互作用的有利氨基酸,而 Glu166 可以与筛选出的分子中质子化的伯胺或仲胺形成盐桥。因此,报告的这些化合物能够与配体-受体相互作用中的关键氨基酸 His41 和 Glu166 结合。药效团分析进一步验证了这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0426/10379331/a52ed132a241/ijms-24-11390-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验