Suppr超能文献

探索纳秒级脉冲电场对钙通道电压感应域诱导的构象变化。

Exploring the Conformational Changes Induced by Nanosecond Pulsed Electric Fields on the Voltage Sensing Domain of a Ca Channel.

作者信息

Ruiz-Fernández Alvaro R, Campos Leonardo, Villanelo Felipe, Gutiérrez-Maldonado Sebastian E, Perez-Acle Tomas

机构信息

Computational Biology Lab, Fundación Ciencia & Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile.

Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago 8420524, Chile.

出版信息

Membranes (Basel). 2021 Jun 26;11(7):473. doi: 10.3390/membranes11070473.

Abstract

Nanosecond Pulsed Electric Field (nsPEF or Nano Pulsed Stimulation, NPS) is a technology that delivers a series of pulses of high-voltage electric fields during a short period of time, in the order of nanoseconds. The main consequence of nsPEF upon cells is the formation of nanopores, which is followed by the gating of ionic channels. Literature is conclusive in that the physiological mechanisms governing ion channel gating occur in the order of milliseconds. Hence, understanding how these channels can be activated by a nsPEF would be an important step in order to conciliate fundamental biophysical knowledge with improved nsPEF applications. To get insights on both the kinetics and thermodynamics of ion channel gating induced by nsPEF, in this work, we simulated the Voltage Sensing Domain (VSD) of a voltage-gated Ca2+ channel, inserted in phospholipidic membranes with different concentrations of cholesterol. We studied the conformational changes of the VSD under a nsPEF mimicked by the application of a continuous electric field lasting 50 ns with different intensities as an approach to reveal novel mechanisms leading to ion channel gating in such short timescales. Our results show that using a membrane with high cholesterol content, under an nsPEF of 50 ns and E→ = 0.2 V/nm, the VSD undergoes major conformational changes. As a whole, our work supports the notion that membrane composition may act as an allosteric regulator, specifically cholesterol content, which is fundamental for the response of the VSD to an external electric field. Moreover, changes on the VSD structure suggest that the gating of voltage-gated Ca2+ channels by a nsPEF may be due to major conformational changes elicited in response to the external electric field. Finally, the VSD/cholesterol-bilayer under an nsPEF of 50 ns and E→ = 0.2 V/nm elicits a pore formation across the VSD suggesting a new non-reported effect of nsPEF into cells, which can be called a "protein mediated electroporation".

摘要

纳秒脉冲电场(nsPEF或纳米脉冲刺激,NPS)是一种在短时间内(纳秒级)施加一系列高压电场脉冲的技术。nsPEF作用于细胞的主要结果是形成纳米孔,随后离子通道开启。文献确凿表明,控制离子通道开启的生理机制发生在毫秒级。因此,了解这些通道如何被nsPEF激活将是使基础生物物理知识与改进的nsPEF应用相协调的重要一步。为了深入了解nsPEF诱导的离子通道开启的动力学和热力学,在这项工作中,我们模拟了插入不同胆固醇浓度磷脂膜中的电压门控Ca2+通道的电压传感结构域(VSD)。我们研究了在持续50 ns、不同强度的连续电场模拟的nsPEF作用下VSD的构象变化,以此揭示在如此短的时间尺度上导致离子通道开启的新机制。我们的结果表明,使用高胆固醇含量的膜,在50 ns、电场强度E→ = 0.2 V/nm的nsPEF作用下,VSD会发生重大构象变化。总体而言,我们的工作支持这样一种观点,即膜组成可能作为一种变构调节剂,特别是胆固醇含量,它对于VSD对外界电场的响应至关重要。此外,VSD结构的变化表明,nsPEF对电压门控Ca2+通道开启可能是由于响应外部电场而引发的重大构象变化。最后,在50 ns、电场强度E→ = 0.2 V/nm的nsPEF作用下,VSD/胆固醇双层膜会在VSD上引发孔形成,这表明nsPEF对细胞有新的未报道的效应,可称为“蛋白质介导的电穿孔”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验