Suppr超能文献

使用影像组学和机器学习方法对乳腺肿瘤进行特征分析。

Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches.

作者信息

Faraz Khuram, Dauce Grégoire, Bouhamama Amine, Leporq Benjamin, Sasaki Hajime, Bito Yoshitaka, Beuf Olivier, Pilleul Frank

机构信息

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France.

FUJIFILM Healthcare France S.A.S., 69800 Saint-Priest, France.

出版信息

J Pers Med. 2023 Jun 28;13(7):1062. doi: 10.3390/jpm13071062.

Abstract

Determining histological subtypes, such as invasive ductal and invasive lobular carcinomas (IDCs and ILCs) and immunohistochemical markers, such as estrogen response (ER), progesterone response (PR), and the HER2 protein status is important in planning breast cancer treatment. MRI-based radiomic analysis is emerging as a non-invasive substitute for biopsy to determine these signatures. We explore the effectiveness of radiomics-based and CNN (convolutional neural network)-based classification models to this end. T1-weighted dynamic contrast-enhanced, contrast-subtracted T1, and T2-weighted MR images of 429 breast cancer tumors from 323 patients are used. Various combinations of input data and classification schemes are applied for ER vs. ER, PR vs. PR, HER2 vs. HER2, and IDC vs. ILC classification tasks. The best results were obtained for the ER vs. ER and IDC vs. ILC classification tasks, with their respective AUCs reaching 0.78 and 0.73 on test data. The results with multi-contrast input data were generally better than the mono-contrast alone. The radiomics and CNN-based approaches generally exhibited comparable results. ER and IDC/ILC classification results were promising. PR and HER2 classifications need further investigation through a larger dataset. Better results by using multi-contrast data might indicate that multi-parametric quantitative MRI could be used to achieve more reliable classifiers.

摘要

确定组织学亚型,如浸润性导管癌和浸润性小叶癌(IDC和ILC),以及免疫组化标志物,如雌激素反应(ER)、孕激素反应(PR)和HER2蛋白状态,对于规划乳腺癌治疗至关重要。基于MRI的放射组学分析正在成为一种用于确定这些特征的非侵入性活检替代方法。为此,我们探索了基于放射组学和基于卷积神经网络(CNN)的分类模型的有效性。使用了来自323例患者的429个乳腺癌肿瘤的T1加权动态对比增强、对比剂减去T1和T2加权MR图像。将输入数据和分类方案的各种组合应用于ER与ER、PR与PR、HER2与HER2以及IDC与ILC的分类任务。在ER与ER以及IDC与ILC分类任务中获得了最佳结果,在测试数据上它们各自的AUC分别达到0.78和0.73。多对比输入数据的结果通常优于单对比数据。基于放射组学和基于CNN的方法通常表现出可比的结果。ER和IDC/ILC的分类结果很有前景。PR和HER2的分类需要通过更大的数据集进一步研究。使用多对比数据获得更好的结果可能表明多参数定量MRI可用于实现更可靠的分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5403/10382057/2a6f228dae5f/jpm-13-01062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验