Zhang Jie, Liu Shuhe, Yuan Hang, Yong Ruiqi, Duan Sixuan, Li Yifan, Spencer Joseph, Lim Eng Gee, Yu Limin, Song Pengfei
School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK.
Micromachines (Basel). 2023 Jun 29;14(7):1339. doi: 10.3390/mi14071339.
The is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of for experiments is tedious and inefficient. The microfluidic-assisted sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms.
由于其透明度和适合光学成像的特性,它是研究人类疾病和遗传学的理想模式生物。然而,手动筛选大量用于实验的它是繁琐且低效的。微流控辅助的它分选芯片因其自动化和操作简便而被认为是解决这一问题的有前途的平台。尽管如此,由于对蠕虫表型的不同研究需求,具有多个参数的自动化它分选需要高效的识别技术。为了提高多参数分选的效率和准确性,我们使用你只看一次(YOLO)v7开发了一个深度学习模型来自动检测和识别它。我们使用了来自各种研究的微流控芯片中3931条带注释蠕虫的数据集。我们的模型在自动化它识别方面比YOLOv5和更快的区域卷积神经网络(Faster R-CNN)具有更高的精度,在交并比(IoU)为0.5的平均精度均值(mAP)阈值下达到了99.56%。此外,我们的模型表现出良好的泛化能力,在外部验证集上的mAP@0.5为94.21%。我们的模型可以高效准确地识别和计算蠕虫的多种表型,包括大小、移动速度和荧光。多参数识别模型可以提高分选效率,并有可能促进自动化和集成微流控平台的发展。