Suppr超能文献

基于联邦学习的个体化发作前模式感知癫痫发作预测

Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning.

机构信息

Department of Computer Science, Taibah University, Medina 42353, Saudi Arabia.

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.

出版信息

Sensors (Basel). 2023 Jul 21;23(14):6578. doi: 10.3390/s23146578.

Abstract

Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.

摘要

脑电图 (EEG) 信号是区分发作前期和发作间期的主要来源,能够在癫痫发作前提供预警。由于数据稀缺、多样性和隐私问题,癫痫发作预测系统面临重大挑战。本文提出了一种与联邦学习 (FL) 模型相关的癫痫发作预测的三层架构,该架构能够通过利用来自全球分布的患者的大量癫痫发作模式来提高能力,同时保持数据隐私。通过对两级边缘层进行建模,实现了全局和局部模型辅助决策来确定发作前期状态。带有图卷积神经网络 (Spiking-GCNN) 的 Spiking Encoder (SE) 作为使用双时间尺度方法训练的局部模型。每个局部模型都利用通过 FL 从不同医疗中心获得的聚合癫痫知识,并在粗粒度个性化中确定发作前期概率。自适应神经模糊推理系统 (ANFIS) 用于细粒度个性化,通过检查 FL 模型、心率变异性特征和患者特定临床特征的结果来识别癫痫发作患者。因此,当使用双时间尺度方法和基于 Spiking-GCNN 的癫痫模式学习进行建模时,该方法在 CHB-MIT EEG 数据集上的测试中达到了 96.33%的敏感性和 96.14%的特异性。此外,联邦学习的采用极大地帮助了所提出的系统,由于解决了数据稀缺性问题,其准确性提高了 96.28%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea5b/10385318/42dc215f911f/sensors-23-06578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验