Suppr超能文献

一种融合双架构和自动编码器的人类精子自动形态分类方法。

A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm.

机构信息

Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.

Department of Electronic and Informatic Engineering Education, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia.

出版信息

Sensors (Basel). 2023 Jul 22;23(14):6613. doi: 10.3390/s23146613.

Abstract

Infertility has become a common problem in global health, and unsurprisingly, many couples need medical assistance to achieve reproduction. Many human behaviors can lead to infertility, which is none other than unhealthy sperm. The important thing is that assisted reproductive techniques require selecting healthy sperm. Hence, machine learning algorithms are presented as the subject of this research to effectively modernize and make accurate standards and decisions in classifying sperm. In this study, we developed a deep learning fusion architecture called SwinMobile that combines the Shifted Windows Vision Transformer (Swin) and MobileNetV3 into a unified feature space and classifies sperm from impurities in the SVIA Subset-C. Swin Transformer provides long-range feature extraction, while MobileNetV3 is responsible for extracting local features. We also explored incorporating an autoencoder into the architecture for an automatic noise-removing model. Our model was tested on SVIA, HuSHem, and SMIDS. Comparison to the state-of-the-art models was based on F1-score and accuracy. Our deep learning results accurately classified sperm and performed well in direct comparisons with previous approaches despite the datasets' different characteristics. We compared the model from Xception on the SVIA dataset, the MC-HSH model on the HuSHem dataset, and Ilhan et al.'s model on the SMIDS dataset and the astonishing results given by our model. The proposed model, especially SwinMobile-AE, has strong classification capabilities that enable it to function with high classification results on three different datasets. We propose that our deep learning approach to sperm classification is suitable for modernizing the clinical world. Our work leverages the potential of artificial intelligence technologies to rival humans in terms of accuracy, reliability, and speed of analysis. The SwinMobile-AE method we provide can achieve better results than state-of-the-art, even for three different datasets. Our results were benchmarked by comparisons with three datasets, which included SVIA, HuSHem, and SMIDS, respectively (95.4% vs. 94.9%), (97.6% vs. 95.7%), and (91.7% vs. 90.9%). Thus, the proposed model can realize technological advances in classifying sperm morphology based on the evidential results with three different datasets, each having its characteristics related to data size, number of classes, and color space.

摘要

不育已成为全球健康的一个常见问题,毫不奇怪,许多夫妇需要医疗援助才能实现生育。许多人类行为会导致不育,而不健康的精子就是其中之一。重要的是,辅助生殖技术需要选择健康的精子。因此,机器学习算法成为本研究的主题,以有效地实现现代化,并在精子分类方面制定准确的标准和决策。在这项研究中,我们开发了一种名为 SwinMobile 的深度学习融合架构,它将 Shifted Windows Vision Transformer (Swin) 和 MobileNetV3 结合到一个统一的特征空间中,并对 SVIA Subset-C 中的精子与杂质进行分类。Swin Transformer 提供远距离特征提取,而 MobileNetV3 则负责提取局部特征。我们还探索了在架构中加入自动编码器以实现自动降噪模型。我们的模型在 SVIA、HuSHem 和 SMIDS 上进行了测试。与最先进的模型相比,我们基于 F1 分数和准确性进行了比较。尽管数据集的特征不同,但我们的深度学习结果准确地对精子进行了分类,并且在与之前的方法的直接比较中表现良好。我们比较了 SVIA 数据集上的 Xception 模型、HuSHem 数据集上的 MC-HSH 模型以及 SMIDS 数据集上的 Ilhan 等人的模型与我们模型的惊人结果。所提出的模型,特别是 SwinMobile-AE,具有强大的分类能力,能够在三个不同的数据集上实现高分类结果。我们提出,我们的精子分类深度学习方法适用于现代化临床领域。我们的工作利用人工智能技术的潜力,在准确性、可靠性和分析速度方面与人类相媲美。我们提供的 SwinMobile-AE 方法甚至可以在三个不同的数据集上实现比最先进的方法更好的结果。我们的结果通过与分别包括 SVIA、HuSHem 和 SMIDS 的三个数据集进行基准测试得到了验证(95.4%对 94.9%)、(97.6%对 95.7%)和(91.7%对 90.9%)。因此,该模型可以基于三个不同数据集的证据结果实现精子形态分类的技术进步,每个数据集都有其与数据大小、类别数量和颜色空间相关的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4d/10385996/bfd455edb3e3/sensors-23-06613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验