Suppr超能文献

使用CBAM增强的ResNet50进行精确精子形态分类的深度特征工程

Deep feature engineering for accurate sperm morphology classification using CBAM-enhanced ResNet50.

作者信息

Kılıç Şafak

机构信息

School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.

Faculty of Engineering, Architecture and Design, Department of Software Engineering, Kayseri University, Kayseri, Turkey.

出版信息

PLoS One. 2025 Sep 10;20(9):e0330914. doi: 10.1371/journal.pone.0330914. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.

MATERIALS AND METHODS

We propose a hybrid architecture integrating ResNet50 backbone with CBAM attention mechanisms, enhanced by a comprehensive deep feature engineering pipeline. The framework incorporates multiple feature extraction layers (CBAM, GAP, GMP, pre-final) combined with 10 distinct feature selection methods including Principal Component Analysis (PCA), Chi-square test, Random Forest importance, variance thresholding, and their intersections. Classification is performed using Support Vector Machines with RBF/Linear kernels and k-Nearest Neighbors algorithms. The model was rigorously evaluated on two benchmark datasets: SMIDS (3000 images, 3-class) and HuSHeM (216 images, 4-class) using 5-fold cross-validation.

RESULTS

The proposed framework achieved exceptional performance with test accuracies of 96.08 ± 1.2% on SMIDS dataset and 96.77 ± 0.8% on HuSHeM dataset using deep feature engineering, representing significant improvements of 8.08% and 10.41% respectively over baseline CNN performance. McNemar's test confirmed statistical significance ([Formula: see text]). The best configuration (GAP + PCA + SVM RBF) demonstrated superior performance compared to existing state-of-the-art approaches, including recent Vision Transformer and ensemble methods.

CONCLUSIONS AND CLINICAL IMPACT

This research demonstrates the effectiveness of attention-based deep learning combined with sophisticated feature engineering for sperm morphology analysis. The proposed framework achieves state-of-the-art performance while providing clinically interpretable results through Grad-CAM attention visualization. Clinical implications include: (1) standardized, objective fertility assessment reducing diagnostic variability, (2) significant time savings for embryologists (from 30-45 minutes to <1 minute per sample), (3) improved reproducibility across laboratories, and (4) potential for real-time analysis during assisted reproductive procedures, ultimately enhancing patient care and treatment outcomes in reproductive medicine.

摘要

背景与目的

通过精子形态分析进行男性生育力评估仍然是生殖健康评估的关键组成部分,因为异常精子形态与生育率降低和辅助生殖技术效果不佳密切相关。胚胎学家进行的传统手动分析耗时、主观,且观察者间差异很大,研究报告称专家评估者之间的分歧高达40%。本研究提出了一种新颖的深度学习框架,将卷积块注意力模块(CBAM)与ResNet50架构以及先进的深度特征工程(DFE)技术相结合,用于自动、客观的精子形态分类。

材料与方法

我们提出了一种混合架构,将ResNet50主干与CBAM注意力机制相结合,并通过全面的深度特征工程管道进行增强。该框架包含多个特征提取层(CBAM、全局平均池化(GAP)、全局最大池化(GMP)、预最终层),并结合了10种不同的特征选择方法,包括主成分分析(PCA)、卡方检验、随机森林重要性、方差阈值法及其交集。使用具有径向基函数/线性核的支持向量机和k近邻算法进行分类。该模型在两个基准数据集上进行了严格评估:SMIDS(3000张图像,3类)和HuSHeM(216张图像,4类),采用5折交叉验证。

结果

所提出的框架通过深度特征工程在SMIDS数据集上的测试准确率达到96.08±1.2%,在HuSHeM数据集上达到96.77±0.8%,表现出色,分别比基线卷积神经网络(CNN)性能显著提高了8.08%和10.41%。麦克尼马尔检验证实了统计学意义([公式:见原文])。最佳配置(GAP + PCA + 支持向量机径向基函数)与现有的先进方法相比表现更优,包括最近的视觉Transformer和集成方法。

结论与临床意义

本研究证明了基于注意力的深度学习与复杂特征工程相结合用于精子形态分析的有效性。所提出的框架实现了先进的性能,同时通过梯度加权类激活映射(Grad-CAM)注意力可视化提供了临床可解释的结果。临床意义包括:(1)标准化、客观的生育力评估,减少诊断差异;(2)为胚胎学家节省大量时间(从每个样本30 - 45分钟减少到<1分钟);(3)提高各实验室之间的可重复性;(4)在辅助生殖程序中进行实时分析的潜力,最终改善生殖医学中的患者护理和治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d0/12422436/c307edfd19fb/pone.0330914.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验