Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, PR China.
College of Computer and Data Science, Fuzhou University, Fujian, China.
PLoS One. 2022 Nov 29;17(11):e0278217. doi: 10.1371/journal.pone.0278217. eCollection 2022.
Acute coronary syndrome (ACS) is a serious cardiovascular disease that can lead to cardiac arrest if not diagnosed promptly. However, in the actual diagnosis and treatment of ACS, there will be a large number of redundant related features that interfere with the judgment of professionals. Further, existing methods have difficulty identifying high-quality ACS features from these data, and the interpretability work is insufficient. In response to this problem, this paper uses a hybrid feature selection method based on gradient boosting trees and recursive feature elimination with cross-validation (RFECV) to reduce ACS feature redundancy and uses interpretable feature learning for feature selection to retain the most discriminative features. While reducing the feature set search space, this method can balance model simplicity and learning performance to select the best feature subset. We leverage the interpretability of gradient boosting trees to aid in understanding key features of ACS, linking the eigenvalue meaning of instances to model risk predictions to provide interpretability for the classifier. The data set used in this paper is patient records after percutaneous coronary intervention (PCI) in a tertiary hospital in Fujian Province, China from 2016 to 2021. In this paper, we experimentally explored the impact of our method on ACS risk prediction. We extracted 25 key variables from 430 complex ACS medical features, with a feature reduction rate of 94.19%, and identified 5 key ACS factors. Compared with different baseline methods (Logistic Regression, Random Forest, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, and 1D Convolutional Networks), the results show that our method achieves the highest Accuracy of 98.8%.
急性冠状动脉综合征(ACS)是一种严重的心血管疾病,如果不能及时诊断,可能导致心脏骤停。然而,在 ACS 的实际诊断和治疗中,会有大量冗余的相关特征干扰专业人员的判断。此外,现有的方法很难从这些数据中识别出高质量的 ACS 特征,并且可解释性工作不足。针对这一问题,本文采用基于梯度提升树和递归特征消除与交叉验证(RFECV)的混合特征选择方法,减少 ACS 特征的冗余,并使用可解释特征学习进行特征选择,保留最具判别力的特征。在减少特征集搜索空间的同时,该方法可以平衡模型的简单性和学习性能,以选择最佳的特征子集。我们利用梯度提升树的可解释性来辅助理解 ACS 的关键特征,将实例的特征值含义与模型风险预测联系起来,为分类器提供可解释性。本文使用的数据集是中国福建省一家三级医院 2016 年至 2021 年经皮冠状动脉介入治疗(PCI)后的患者记录。在本文中,我们实验性地探讨了我们的方法对 ACS 风险预测的影响。我们从 430 个复杂的 ACS 医学特征中提取了 25 个关键变量,特征减少率为 94.19%,并确定了 5 个关键 ACS 因素。与不同的基线方法(逻辑回归、随机森林、梯度提升、极端梯度提升、多层感知机和 1D 卷积网络)相比,结果表明我们的方法达到了最高的准确率 98.8%。