Suppr超能文献

一种新的基于非参数估计方法优化的地下水高氟和高硝酸盐条件下人体健康风险(HHR)的概率评估过程。

A new probabilistic assessment process for human health risk (HHR) in groundwater with extensive fluoride and nitrate optimized by non parametric estimation method.

机构信息

College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, PR China; Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China.

College of Earth Sciences and Engineering, Hohai University, Nanjing 210098, PR China.

出版信息

Water Res. 2023 Sep 1;243:120379. doi: 10.1016/j.watres.2023.120379. Epub 2023 Jul 17.

Abstract

Excessive amounts of fluoride (F) and nitrate (NO) in groundwater pose a significant threat to human health. However, a quantitative approach to assessing the human health risks caused by these harmful substances is lacking. To optimize the probabilistic assessment process for human health risk (HHR), this study introduced kernel density estimation (KDE) into the stochastic simulation of F and NO content in groundwater samples. The potential HHRs caused by F and NO in Songyuan City were summarized by combining the probabilistic and deterministic assessments. This study found that the concentrations of F and NO did not follow common probability density functions (PDFs), but the KDE method passed the Kolmogorov-Smirnov test with the critical value of 0.067 and 0.062, showing high fitting accuracy. Monte Carlo simulation indicated that the probability of NO for children and adult exceeding the standard is 21.95% and 15.14%, respectively, which is comparable with the results of the deterministic assessment, but the probabilistic assessment emphasized lower probability of HHRs in children caused by excess F(4.14%). Global sensitivity analysis revealed that excessive NO in groundwater has the highest sensitivity of the HHR (>0.1), followed by other factors representing water use habits (>0.01). This study presents a refined probabilistic assessment method for HHR and provides a scientific reference for understanding the state of groundwater environments.

摘要

地下水中过量的氟化物(F)和硝酸盐(NO)对人类健康构成重大威胁。然而,缺乏一种定量方法来评估这些有害物质对人体健康的风险。为了优化人体健康风险(HHR)的概率评估过程,本研究将核密度估计(KDE)引入到地下水样本中 F 和 NO 含量的随机模拟中。通过结合概率和确定性评估,总结了松原市 F 和 NO 引起的潜在 HHR。本研究发现,F 和 NO 的浓度不符合常见的概率密度函数(PDF),但 KDE 方法通过了 Kolmogorov-Smirnov 检验,临界值为 0.067 和 0.062,具有较高的拟合精度。蒙特卡罗模拟表明,儿童和成人 NO 超标概率分别为 21.95%和 15.14%,与确定性评估结果相当,但概率评估强调了过量 F 对儿童 HHR 概率的影响较小(4.14%)。全局敏感性分析表明,地下水中过量的 NO 对 HHR 的敏感性最高(>0.1),其次是代表用水习惯的其他因素(>0.01)。本研究提出了一种精细化的 HHR 概率评估方法,为了解地下水环境状况提供了科学参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验