Suppr超能文献

通过联合嵌入融合多视图功能性脑网络以进行脑疾病识别

Fusing Multiview Functional Brain Networks by Joint Embedding for Brain Disease Identification.

作者信息

Wang Chengcheng, Zhang Limei, Zhang Jinshan, Qiao Lishan, Liu Mingxia

机构信息

School of Mathematics Science, Liaocheng University, Liaocheng 252000, China.

School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China.

出版信息

J Pers Med. 2023 Jan 29;13(2):251. doi: 10.3390/jpm13020251.

Abstract

: Functional brain networks (FBNs) derived from resting-state functional MRI (rs-fMRI) have shown great potential in identifying brain disorders, such as autistic spectrum disorder (ASD). Therefore, many FBN estimation methods have been proposed in recent years. Most existing methods only model the functional connections between brain regions of interest (ROIs) from a single view (e.g., by estimating FBNs through a specific strategy), failing to capture the complex interactions among ROIs in the brain. : To address this problem, we propose fusion of multiview FBNs through joint embedding, which can make full use of the common information of multiview FBNs estimated by different strategies. More specifically, we first stack the adjacency matrices of FBNs estimated by different methods into a tensor and use tensor factorization to learn the joint embedding (i.e., a common factor of all FBNs) for each ROI. Then, we use Pearson's correlation to calculate the connections between each embedded ROI in order to reconstruct a new FBN. : Experimental results obtained on the public ABIDE dataset with rs-fMRI data reveal that our method is superior to several state-of-the-art methods in automated ASD diagnosis. Moreover, by exploring FBN "features" that contributed most to ASD identification, we discovered potential biomarkers for ASD diagnosis. The proposed framework achieves an accuracy of 74.46%, which is generally better than the compared individual FBN methods. In addition, our method achieves the best performance compared to other multinetwork methods, i.e., an accuracy improvement of at least 2.72%. : We present a multiview FBN fusion strategy through joint embedding for fMRI-based ASD identification. The proposed fusion method has an elegant theoretical explanation from the perspective of eigenvector centrality.

摘要

源自静息态功能磁共振成像(rs-fMRI)的功能脑网络(FBNs)在识别脑部疾病(如自闭症谱系障碍(ASD))方面已显示出巨大潜力。因此,近年来提出了许多FBN估计方法。大多数现有方法仅从单一视角对感兴趣脑区(ROIs)之间的功能连接进行建模(例如,通过特定策略估计FBNs),未能捕捉大脑中ROIs之间的复杂相互作用。

为了解决这个问题,我们提出通过联合嵌入融合多视角FBNs,这可以充分利用不同策略估计的多视角FBNs的共同信息。更具体地说,我们首先将不同方法估计的FBNs的邻接矩阵堆叠成一个张量,并使用张量分解来学习每个ROI的联合嵌入(即所有FBNs的一个公共因子)。然后,我们使用皮尔逊相关性来计算每个嵌入ROI之间的连接,以重建一个新的FBN。

在具有rs-fMRI数据的公共ABIDE数据集上获得的实验结果表明,我们的方法在自动ASD诊断方面优于几种最先进的方法。此外,通过探索对ASD识别贡献最大的FBN“特征”,我们发现了ASD诊断的潜在生物标志物。所提出的框架实现了74.46%的准确率,总体上优于所比较的单个FBN方法。此外,与其他多网络方法相比,我们的方法实现了最佳性能,即准确率至少提高了2.72%。

我们提出了一种通过联合嵌入的多视角FBN融合策略用于基于功能磁共振成像的ASD识别。从特征向量中心性的角度来看,所提出的融合方法有一个优雅的理论解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd94/9958959/e20106d6a6e3/jpm-13-00251-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验