Koc Emel, Kalkan Habil, Bilgen Semih
Istanbul Okan University, Istanbul, Türkiye.
Gebze Technical University, Darıca, Türkiye.
Autism Res Treat. 2023 Dec 20;2023:4136087. doi: 10.1155/2023/4136087. eCollection 2023.
This study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and identify important brain connectivity features. The 2D f-MRI images were converted into 3D s-MRI images, and datasets were preprocessed using the Montreal Neurological Institute (MNI) atlas. The data were then denoised to remove any confounding factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation, hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). The proposed model classifies subjects as autistic or not according to how functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule (ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the methods used in previous studies.
本研究旨在通过多种神经影像学方法,提高基于认知和行为表型的自闭症谱系障碍(ASD)诊断的准确性。我们应用机器学习(ML)算法,使用来自大型多站点数据存储库ABIDE(自闭症脑成像数据交换)的结构磁共振成像(s-MRI)以及静息态功能磁共振成像(rs-f-MRI和f-MRI)数据,对ASD患者和健康对照(HC)参与者进行分类,并识别重要的脑连接特征。将二维f-MRI图像转换为三维s-MRI图像,并使用蒙特利尔神经病学研究所(MNI)图谱对数据集进行预处理。然后对数据进行去噪,以消除任何混杂因素。我们通过使用早期融合、晚期融合和交叉融合这三种融合策略表明,在本实施方案中,与卷积神经网络(CNN)或循环神经网络(RNN)相比,混合卷积循环神经网络具有更好的性能。所提出的模型根据功能和解剖连接指标如何基于自闭症诊断观察量表(ADOS)标准提供总体诊断,将受试者分类为是否患有自闭症。我们的混合网络通过融合s-MRI和f-MRI,实现了96%的准确率,优于先前研究中使用的方法。