Suppr超能文献

SAGES 关于手术视频数据使用、结构和探索的共识建议(用于人工智能研究、临床质量改进和手术教育)。

SAGES consensus recommendations on surgical video data use, structure, and exploration (for research in artificial intelligence, clinical quality improvement, and surgical education).

机构信息

Surgical Artificial Intelligence and Innovation Laboratory, Department of Surgery, Massachusetts General Hospital, 15 Parkman Street, WAC339, Boston, MA, 02114, USA.

Department of General, Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Kerpenerstrasse 62, 50937, Cologne, Germany.

出版信息

Surg Endosc. 2023 Nov;37(11):8690-8707. doi: 10.1007/s00464-023-10288-3. Epub 2023 Jul 29.

Abstract

BACKGROUND

Surgery generates a vast amount of data from each procedure. Particularly video data provides significant value for surgical research, clinical outcome assessment, quality control, and education. The data lifecycle is influenced by various factors, including data structure, acquisition, storage, and sharing; data use and exploration, and finally data governance, which encompasses all ethical and legal regulations associated with the data. There is a universal need among stakeholders in surgical data science to establish standardized frameworks that address all aspects of this lifecycle to ensure data quality and purpose.

METHODS

Working groups were formed, among 48 representatives from academia and industry, including clinicians, computer scientists and industry representatives. These working groups focused on: Data Use, Data Structure, Data Exploration, and Data Governance. After working group and panel discussions, a modified Delphi process was conducted.

RESULTS

The resulting Delphi consensus provides conceptualized and structured recommendations for each domain related to surgical video data. We identified the key stakeholders within the data lifecycle and formulated comprehensive, easily understandable, and widely applicable guidelines for data utilization. Standardization of data structure should encompass format and quality, data sources, documentation, metadata, and account for biases within the data. To foster scientific data exploration, datasets should reflect diversity and remain adaptable to future applications. Data governance must be transparent to all stakeholders, addressing legal and ethical considerations surrounding the data.

CONCLUSION

This consensus presents essential recommendations around the generation of standardized and diverse surgical video databanks, accounting for multiple stakeholders involved in data generation and use throughout its lifecycle. Following the SAGES annotation framework, we lay the foundation for standardization of data use, structure, and exploration. A detailed exploration of requirements for adequate data governance will follow.

摘要

背景

手术过程会产生大量数据,尤其是视频数据,对手术研究、临床结果评估、质量控制和教育具有重要价值。数据生命周期受到多种因素的影响,包括数据结构、采集、存储和共享;数据使用和探索,最后是数据治理,涵盖与数据相关的所有伦理和法律规定。手术数据科学的利益相关者普遍需要建立标准化框架,以解决数据生命周期的所有方面,确保数据质量和用途。

方法

成立了工作组,成员包括来自学术界和工业界的 48 名代表,包括临床医生、计算机科学家和行业代表。这些工作组专注于数据使用、数据结构、数据探索和数据治理。在工作组和小组讨论之后,进行了修改后的 Delphi 流程。

结果

由此产生的 Delphi 共识为与手术视频数据相关的每个领域提供了概念化和结构化的建议。我们确定了数据生命周期中的关键利益相关者,并为数据利用制定了全面、易于理解和广泛适用的指南。数据结构的标准化应包括格式和质量、数据源、文档、元数据,并考虑数据中的偏差。为了促进科学数据探索,数据集应反映多样性,并适应未来的应用。数据治理必须对所有利益相关者透明,解决数据周围的法律和伦理问题。

结论

本共识提出了有关生成标准化和多样化手术视频数据库的基本建议,涵盖了数据生成和使用生命周期中涉及的多个利益相关者。我们遵循 SAGES 注释框架,为数据使用、结构和探索的标准化奠定了基础。接下来将详细探讨充分数据治理的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5634/10616217/ab6385ebd2d1/464_2023_10288_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验