Suppr超能文献

乳腺癌增强手术决策工具:预测乳房切除术和乳房重建后 2 年的术后身体、性和心理社会健康(INSPiRED 004)。

Enhanced Surgical Decision-Making Tools in Breast Cancer: Predicting 2-Year Postoperative Physical, Sexual, and Psychosocial Well-Being following Mastectomy and Breast Reconstruction (INSPiRED 004).

机构信息

Section of Patient Centered Analytics, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Ann Surg Oncol. 2023 Nov;30(12):7046-7059. doi: 10.1245/s10434-023-13971-w. Epub 2023 Jul 30.

Abstract

BACKGROUND

We sought to predict clinically meaningful changes in physical, sexual, and psychosocial well-being for women undergoing cancer-related mastectomy and breast reconstruction 2 years after surgery using machine learning (ML) algorithms trained on clinical and patient-reported outcomes data.

PATIENTS AND METHODS

We used data from women undergoing mastectomy and reconstruction at 11 study sites in North America to develop three distinct ML models. We used data of ten sites to predict clinically meaningful improvement or worsening by comparing pre-surgical scores with 2 year follow-up data measured by validated Breast-Q domains. We employed ten-fold cross-validation to train and test the algorithms, and then externally validated them using the 11th site's data. We considered area-under-the-receiver-operating-characteristics-curve (AUC) as the primary metric to evaluate performance.

RESULTS

Overall, between 1454 and 1538 patients completed 2 year follow-up with data for physical, sexual, and psychosocial well-being. In the hold-out validation set, our ML algorithms were able to predict clinically significant changes in physical well-being (chest and upper body) (worsened: AUC range 0.69-0.70; improved: AUC range 0.81-0.82), sexual well-being (worsened: AUC range 0.76-0.77; improved: AUC range 0.74-0.76), and psychosocial well-being (worsened: AUC range 0.64-0.66; improved: AUC range 0.66-0.66). Baseline patient-reported outcome (PRO) variables showed the largest influence on model predictions.

CONCLUSIONS

Machine learning can predict long-term individual PROs of patients undergoing postmastectomy breast reconstruction with acceptable accuracy. This may better help patients and clinicians make informed decisions regarding expected long-term effect of treatment, facilitate patient-centered care, and ultimately improve postoperative health-related quality of life.

摘要

背景

我们试图通过机器学习(ML)算法,利用临床和患者报告的结果数据,预测女性在接受癌症相关乳房切除术和乳房重建 2 年后在身体、性和心理社会健康方面的临床有意义的变化。

患者和方法

我们使用来自北美 11 个研究地点接受乳房切除术和重建的女性的数据来开发三个不同的 ML 模型。我们使用十个地点的数据来预测临床意义上的改善或恶化,方法是将术前评分与通过验证后的 Breast-Q 域测量的 2 年随访数据进行比较。我们采用十折交叉验证来训练和测试算法,然后使用第十一个地点的数据对其进行外部验证。我们将受试者工作特征曲线下的面积(AUC)作为评估性能的主要指标。

结果

总体而言,1454 至 1538 名患者完成了 2 年随访,有身体、性和心理社会健康方面的数据。在保留验证集中,我们的 ML 算法能够预测身体(胸部和上半身)健康(恶化:AUC 范围 0.69-0.70;改善:AUC 范围 0.81-0.82)、性健康(恶化:AUC 范围 0.76-0.77;改善:AUC 范围 0.74-0.76)和心理社会健康(恶化:AUC 范围 0.64-0.66;改善:AUC 范围 0.66-0.66)方面有临床意义的变化。基线患者报告的结果(PRO)变量对模型预测的影响最大。

结论

机器学习可以预测接受乳房切除术和乳房重建后患者的长期个体 PRO,其准确性可以接受。这可能会更好地帮助患者和临床医生了解治疗的预期长期效果,促进以患者为中心的护理,并最终改善术后健康相关的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6974/10562277/0ffeb345e4dc/10434_2023_13971_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验