Suppr超能文献

使用患者报告的症状数据对晚期癌症患者进行 180 天死亡率预测的机器学习模型。

Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data.

机构信息

MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Division of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Qual Life Res. 2023 Mar;32(3):713-727. doi: 10.1007/s11136-022-03284-y. Epub 2022 Oct 29.

Abstract

PURPOSE

The objective of the current study was to develop and test the performances of different ML algorithms which were trained using patient-reported symptom severity data to predict mortality within 180 days for patients with advanced cancer.

METHODS

We randomly selected 630 of 689 patients with advanced cancer at our institution who completed symptom PRO measures as part of routine care between 2009 and 2020. Using clinical, demographic, and PRO data, we trained and tested four ML algorithms: generalized regression with elastic net regularization (GLM), extreme gradient boosting (XGBoost) trees, support vector machines (SVM), and a single hidden layer neural network (NNET). We assessed the performance of algorithms individually as well as part of an unweighted voting ensemble on the hold-out testing sample. Performance was assessed using area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

RESULTS

The starting cohort of 630 patients was randomly partitioned into training (n = 504) and testing (n = 126) samples. Of the four ML models, the XGBoost algorithm demonstrated the best performance for 180-day mortality prediction in testing data (AUROC = 0.69, sensitivity = 0.68, specificity = 0.62, PPV = 0.66, NPV = 0.64). Ensemble of all algorithms performed worst (AUROC = 0.65, sensitivity = 0.65, specificity = 0.62, PPV = 0.65, NPV = 0.62). Of individual PRO symptoms, shortness of breath emerged as the variable of highest impact on the XGBoost 180-mortality prediction (1-AUROC = 0.30).

CONCLUSION

Our findings support ML models driven by patient-reported symptom severity as accurate predictors of short-term mortality in patients with advanced cancer, highlighting the opportunity to integrate these models prospectively into future studies of goal-concordant care.

摘要

目的

本研究的目的是开发和测试不同机器学习(ML)算法的性能,这些算法使用患者报告的症状严重程度数据进行训练,以预测晚期癌症患者 180 天内的死亡率。

方法

我们随机选择了 2009 年至 2020 年期间在我们机构接受晚期癌症治疗且完成症状患者报告结局(PRO)测量的 689 名患者中的 630 名作为研究对象。使用临床、人口统计学和 PRO 数据,我们训练和测试了四种 ML 算法:广义回归与弹性网络正则化(GLM)、极端梯度提升(XGBoost)树、支持向量机(SVM)和单隐藏层神经网络(NNET)。我们分别评估了算法在保留测试样本上的性能,以及作为无权重投票集成的一部分的性能。通过接收者操作特征曲线下的面积(AUROC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)来评估性能。

结果

起始的 630 名患者队列被随机分为训练(n=504)和测试(n=126)样本。在四种 ML 模型中,XGBoost 算法在测试数据中对 180 天死亡率的预测表现最佳(AUROC=0.69,敏感性=0.68,特异性=0.62,PPV=0.66,NPV=0.64)。所有算法的集成表现最差(AUROC=0.65,敏感性=0.65,特异性=0.62,PPV=0.65,NPV=0.62)。在个体 PRO 症状中,呼吸困难成为 XGBoost 180 天死亡率预测的最具影响力变量(1-AUROC=0.30)。

结论

我们的研究结果支持由患者报告的症状严重程度驱动的 ML 模型作为晚期癌症患者短期死亡率的准确预测因子,这突出了将这些模型前瞻性地整合到未来目标一致护理研究中的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ff/9992030/46dffa7ada3d/11136_2022_3284_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验