Clevenger Abigail J, Jha Aakanksha, Moore Erika, Raghavan Shreya A
Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
Trends Biotechnol. 2025 Jan;43(1):131-144. doi: 10.1016/j.tibtech.2024.07.009. Epub 2024 Aug 17.
Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
巨噬细胞免疫细胞存在于由其物理和生化环境决定的可塑性表型谱上。控制巨噬细胞功能以促进免疫再生或对抗病理状况已成为一种治疗可能性。将巨噬细胞免疫调节疗法转化应用的限速步骤一直是缺乏关于巨噬细胞微环境中的物理和生物化学如何共同作用以决定表型的基础知识。在这篇综述中,我们探讨了生物工程模型系统的最新趋势,这些系统整合了应用于巨噬细胞机械传感和可塑性的物理和生化变量。我们关注机械力和生物材料组成的调节如何在生理和病理背景下协调巨噬细胞功能。最终,对巨噬细胞中刺激反应性的更广泛理解将为未来的调节疗法提供明智的设计思路。