Tyagi Praveen Kumar, Agarwal Dheeraj
Department of ECE, Maulana Azad National Institute of Technology, Bhopal, 462003 India.
Biomed Eng Lett. 2023 Jul 5;13(3):293-312. doi: 10.1007/s13534-023-00297-5. eCollection 2023 Aug.
Sleep apnea (SLA) is a respiratory-related sleep disorder that affects a major proportion of the population. The gold standard in sleep testing, polysomnography, is costly, inconvenient, and unpleasant, and it requires a skilled professional to score. Multiple researchers have suggested and developed automated scoring processes with less detectors and automated classification algorithms to resolve these problems. An automatic detection system will allow for a high diagnosis rate and the analysis of additional patients. Deep learning (DL) is achieving high priority due to the availability of databases and recently developed methods. As the most up-and-coming technique for classification and generative tasks, DL has shown its significant potential in 2-dimensional clinical image processing studies. However, physiological information collected as 1-dimensional data has yet to be effectively extracted from this new approach to achieve the needed medical goals. So, in this study, we review the most recent studies in the field of DL applied to physiological data based on pulse oxygen saturation, electrocardiogram, airflow, and sound signal. A total of 47 articles from different journals and publishing houses that were published between 2012 and 2022 were identified. The primary objective of this work is to perform a comprehensive analysis to analyze, classify, and compare the main characteristics of deep-learning algorithms applied in physiological data processing for SLA detection. Overall, our analysis provides comprehensive and detailed information for researchers looking to add to this field. The data input source, objective, DL network, training framework, and database references are the critical factors of the DL approach examined. These are the most critical variables that influence system performance. We categorized the relevant research studies in physiological sensor data analysis using the DL approach based on (1) Physiological sensor data aspects, like signal types, sampling frequency, and window size; and (2) DL model perspectives, such as learning structure and input data types.
The online version contains supplementary material available at 10.1007/s13534-023-00297-5.
睡眠呼吸暂停(SLA)是一种与呼吸相关的睡眠障碍,影响着很大一部分人群。睡眠测试的金标准——多导睡眠图,成本高昂、不便且令人不适,并且需要专业人员进行评分。多位研究人员提出并开发了使用较少探测器和自动分类算法的自动评分流程来解决这些问题。自动检测系统将实现高诊断率并能分析更多患者。由于数据库的可用性和最近开发的方法,深度学习(DL)正受到高度重视。作为分类和生成任务中最具潜力的技术,DL在二维临床图像处理研究中已显示出巨大潜力。然而,以一维数据形式收集的生理信息尚未能从这种新方法中有效提取出来以实现所需的医学目标。因此,在本研究中,我们回顾了DL应用于基于脉搏血氧饱和度、心电图、气流和声信号的生理数据领域的最新研究。共识别出2012年至2022年间不同期刊和出版社发表的47篇文章。这项工作的主要目标是进行全面分析,以分析、分类和比较应用于SLA检测的生理数据处理中的深度学习算法的主要特征。总体而言,我们的分析为希望涉足该领域的研究人员提供了全面而详细的信息。数据输入源、目标、DL网络、训练框架和数据库参考文献是所研究的DL方法的关键因素。这些是影响系统性能的最关键变量。我们基于(1)生理传感器数据方面,如信号类型、采样频率和窗口大小;以及(2)DL模型视角,如学习结构和输入数据类型,对使用DL方法进行生理传感器数据分析的相关研究进行了分类。
在线版本包含可在10.1007/s13534-023-00297-5获取的补充材料。