Suppr超能文献

全面综述:生物医学应用中阻塞性睡眠呼吸暂停检测的计算模型。

A Comprehensive Review: Computational Models for Obstructive Sleep Apnea Detection in Biomedical Applications.

机构信息

Department of Biomedical Instrumentation Engineering, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641108, India.

Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India.

出版信息

Biomed Res Int. 2022 Feb 16;2022:7242667. doi: 10.1155/2022/7242667. eCollection 2022.

Abstract

Obstructive leep apnea (OSA) is a sleep disorder characterized by periodic episodes of partial or complete upper airway obstruction caused by narrowing or collapse of the pharyngeal airway despite ongoing breathing efforts during sleep. Fall in the blood oxygen saturation and cortical arousals are prompted by this reduction in the airflow which lasts for at least 10 seconds. Impaired labor performance, debilitated quality of life, excessive daytime sleepiness, high snoring, and tiredness even after a whole night's sleep are the primary symptoms of OSA. In due course, the long-standing contributions of OSA culminate in hypertension, arrhythmia, cerebrovascular disease, and heart failure. The traditional diagnostic approach of OSA is the laboratory-based polysomnography (PSG) overnight sleep study, which is a tedious and labor-intensive process that exaggerates the discomfort to the patient. With the advent of computer-aided diagnosis (CAD), automatic detection of OSA has gained increasing interest among researchers in the area of sleep disorders as it influences both diagnostic and therapeutic decisions. The research literature on sleep apnea published during the last decade has been surveyed, focusing on the varied screening approaches accustomed to identifying OSA events and the developmental knowledge offered by multiple contributors from the software perspective. The current study presents an overview of the pathophysiology of OSA, the detection methods, physiological signals related to OSA, the different preprocessing, feature extraction, feature selection, and classification techniques employed for the detection and classification of OSA. Consequently, the research challenges and research gaps in the diagnosis of OSA are identified, critically analyzed, and presented in the best possible light.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种睡眠障碍,其特征是在上呼吸道部分或完全阻塞,尽管在睡眠期间持续进行呼吸努力,但咽气道狭窄或塌陷。这种气流减少会导致血氧饱和度下降和皮质唤醒,持续至少 10 秒。OSA 的主要症状包括劳动能力受损、生活质量下降、白天过度嗜睡、严重打鼾和即使整夜睡眠后仍感到疲倦。随着时间的推移,OSA 的长期影响会导致高血压、心律失常、脑血管疾病和心力衰竭。OSA 的传统诊断方法是基于实验室的多导睡眠图(PSG)夜间睡眠研究,这是一个繁琐且耗费体力的过程,会使患者感到不适。随着计算机辅助诊断(CAD)的出现,自动检测 OSA 引起了睡眠障碍领域研究人员的越来越多的兴趣,因为它会影响诊断和治疗决策。对过去十年中发表的睡眠呼吸暂停研究文献进行了调查,重点介绍了用于识别 OSA 事件的各种筛选方法,以及从软件角度提供的多位贡献者的开发知识。本研究概述了 OSA 的病理生理学、检测方法、与 OSA 相关的生理信号、用于 OSA 检测和分类的不同预处理、特征提取、特征选择和分类技术。因此,确定、批判性分析并尽可能地呈现了 OSA 诊断中的研究挑战和研究空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f041/8866013/c7eb1fb135ce/BMRI2022-7242667.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验