Gao Xueshan, Zhang Pengfei, Peng Xuefeng, Zhao Jianbo, Liu Kaiyuan, Miao Mingda, Zhao Peng, Luo Dingji, Li Yige
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
China Shipbuilding Industry Corporation, No.713 Institute, Zhengzhou, Henan, China.
Front Bioeng Biotechnol. 2023 Jul 14;11:1223831. doi: 10.3389/fbioe.2023.1223831. eCollection 2023.
The lower limb exoskeleton rehabilitation robot should perform gait planning based on the patient's motor intention and training status and provide multimodal and robust control schemes in the control strategy to enhance patient participation. This paper proposes an adaptive particle swarm optimization admittance control algorithm (APSOAC), which adaptively optimizes the weights and learning factors of the PSO algorithm to avoid the problem of particle swarm falling into local optimal points. The proposed improved adaptive particle swarm algorithm adjusts the stiffness and damping parameters of the admittance control online to reduce the interaction force between the patient and the robot and adaptively plans the patient's desired gait profile. In addition, this study proposes a dual RBF neural network adaptive sliding mode controller (DRNNASMC) to track the gait profile, compensate for frictional forces and external perturbations generated in the human-robot interaction using the RBF network, calculate the required moments for each joint motor based on the lower limb exoskeleton dynamics model, and perform stability analysis based on the Lyapunov theory. Finally, the efficiency of the APSOAC and DRNNASMC algorithms is demonstrated by active and passive walking experiments with three healthy subjects, respectively.
下肢外骨骼康复机器人应根据患者的运动意图和训练状态进行步态规划,并在控制策略中提供多模态且稳健的控制方案,以提高患者的参与度。本文提出了一种自适应粒子群优化导纳控制算法(APSOAC),该算法自适应地优化粒子群算法的权重和学习因子,以避免粒子群陷入局部最优解的问题。所提出的改进自适应粒子群算法在线调整导纳控制的刚度和阻尼参数,以减小患者与机器人之间的相互作用力,并自适应地规划患者期望的步态轮廓。此外,本研究提出了一种双RBF神经网络自适应滑模控制器(DRNNASMC)来跟踪步态轮廓,利用RBF网络补偿人机交互中产生的摩擦力和外部扰动,根据下肢外骨骼动力学模型计算每个关节电机所需的力矩,并基于李雅普诺夫理论进行稳定性分析。最后,分别通过对三名健康受试者进行主动和被动步行实验,验证了APSOAC和DRNNASMC算法的有效性。