Suppr超能文献

用于骨科植入物的冷喷涂生物玻璃/聚醚醚酮复合涂层的开发。

Development of Bioglass/PEEK Composite Coating by Cold Gas Spray for Orthopedic Implants.

作者信息

Garrido B, Albaladejo-Fuentes V, Cano I G, Dosta S

机构信息

Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès, 1-1, 08028 Barcelona, Spain.

出版信息

J Therm Spray Technol. 2022;31(1-2):186-196. doi: 10.1007/s11666-021-01312-w. Epub 2022 Jan 10.

Abstract

Cold gas spray (CGS) technology has allowed the development of biofunctional coatings composed of 45S5 and polyetheretherketone (PEEK). The combination of a bioactive glass material embedded in a polymeric matrix makes this composite an interesting material for orthopedic applications since this composite meets the biomechanical and biological requirements of an implant. In the present study, blends of bioactive glass 45S5 and PEEK powder with different granulometry and 45S5/PEEK ratio have been prepared. These mixtures of powders have been deposited onto PEEK substrates by CGS with the goal of incorporating a bioactive additive to the biocompatible polymer, which can improve the bone-implant interaction of PEEK. The deposition efficiency (DE) of the coatings has been evaluated, and from the results obtained, it was possible to conclude that DE is significantly affected by the granulometry and by the 45S5/PEEK ratio of the blends. By scanning electron microscopy (SEM) inspection, it was observed that the use of blends with high 45S5/PEEK ratio lead to the deposition of coatings with high content of 45S5. Finally, the friction behavior of the coatings was analyzed performing ball-on-disk tests and these experiments showed that the presence of glass particles has a beneficial role in the wear resistance.

摘要

冷气体喷涂(CGS)技术推动了由45S5和聚醚醚酮(PEEK)组成的生物功能涂层的发展。嵌入聚合物基体中的生物活性玻璃材料的组合使这种复合材料成为骨科应用中一种有趣的材料,因为这种复合材料满足了植入物的生物力学和生物学要求。在本研究中,制备了具有不同粒度和45S5/PEEK比例的生物活性玻璃45S5和PEEK粉末的混合物。这些粉末混合物已通过冷气体喷涂沉积到PEEK基材上,目的是将生物活性添加剂引入生物相容性聚合物中,从而改善PEEK与骨的植入物相互作用。对涂层的沉积效率(DE)进行了评估,从获得的结果可以得出结论,沉积效率受混合物的粒度和45S5/PEEK比例的显著影响。通过扫描电子显微镜(SEM)检查,观察到使用高45S5/PEEK比例的混合物会导致沉积具有高45S5含量的涂层。最后,通过球盘试验分析了涂层的摩擦行为,这些实验表明玻璃颗粒的存在对耐磨性有有益作用。

相似文献

1
Development of Bioglass/PEEK Composite Coating by Cold Gas Spray for Orthopedic Implants.
J Therm Spray Technol. 2022;31(1-2):186-196. doi: 10.1007/s11666-021-01312-w. Epub 2022 Jan 10.
2
Mechanical behavior and corrosion resistance of sol-gel derived 45S5 bioactive glass coating on Ti6Al4V synthesized by electrophoretic deposition.
J Mech Behav Biomed Mater. 2022 Oct;134:105352. doi: 10.1016/j.jmbbm.2022.105352. Epub 2022 Jul 1.
4
Enhancing the bioactivity of polymeric implants by means of cold gas spray coatings.
J Biomed Mater Res B Appl Biomater. 2014 Oct;102(7):1537-43. doi: 10.1002/jbm.b.33134. Epub 2014 Mar 6.
5
Electrophoretic deposition of zirconia-Bioglass composite coatings for biomedical implants.
J Biomed Mater Res A. 2007 Aug;82(2):436-44. doi: 10.1002/jbm.a.31162.
7
Processing and evaluation of bioactive coatings on polymeric implants.
J Biomed Mater Res A. 2013 Sep;101(9):2621-9. doi: 10.1002/jbm.a.34557. Epub 2013 Feb 15.
8
Characteristics of Hybrid Bioglass-Chitosan Coatings on the Plasma Activated PEEK Polymer.
Molecules. 2023 Feb 11;28(4):1729. doi: 10.3390/molecules28041729.
9
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.
Front Bioeng Biotechnol. 2015 Oct 19;3:159. doi: 10.3389/fbioe.2015.00159. eCollection 2015.
10
Development, characterization, and biological study of bioglass coatings 45S5 and BioK on zirconia implant surfaces.
J Biomed Mater Res B Appl Biomater. 2024 Feb;112(2):e35380. doi: 10.1002/jbm.b.35380.

引用本文的文献

2
Low-Cost Cranioplasty-A Systematic Review of 3D Printing in Medicine.
Materials (Basel). 2022 Jul 6;15(14):4731. doi: 10.3390/ma15144731.
3
Recent Advancements in Materials and Coatings for Biomedical Implants.
Gels. 2022 May 21;8(5):323. doi: 10.3390/gels8050323.
4
Adaptive Mechanism for Designing a Personalized Cranial Implant and Its 3D Printing Using PEEK.
Polymers (Basel). 2022 Mar 21;14(6):1266. doi: 10.3390/polym14061266.

本文引用的文献

1
Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109895. doi: 10.1016/j.msec.2019.109895. Epub 2019 Jun 16.
3
Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
Acta Biomater. 2017 Oct 15;62:1-28. doi: 10.1016/j.actbio.2017.08.030. Epub 2017 Aug 24.
4
Preparation Methods for Improving PEEK's Bioactivity for Orthopedic and Dental Application: A Review.
Int J Biomater. 2016;2016:8202653. doi: 10.1155/2016/8202653. Epub 2016 Apr 4.
5
Bioactive Glasses: Frontiers and Challenges.
Front Bioeng Biotechnol. 2015 Nov 30;3:194. doi: 10.3389/fbioe.2015.00194. eCollection 2015.
6
Bioactive glasses—structure and properties.
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4160-81. doi: 10.1002/anie.201405310. Epub 2015 Mar 12.
7
Implant biomaterials: A comprehensive review.
World J Clin Cases. 2015 Jan 16;3(1):52-7. doi: 10.12998/wjcc.v3.i1.52.
9
Review of bioactive glass: from Hench to hybrids.
Acta Biomater. 2013 Jan;9(1):4457-86. doi: 10.1016/j.actbio.2012.08.023. Epub 2012 Aug 21.
10
Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures - a prospective randomized 11-year follow-up.
J Long Term Eff Med Implants. 2011;21(2):139-48. doi: 10.1615/jlongtermeffmedimplants.v21.i2.40.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验