Yang Shu, Gao Chenyin, Zeng Donglin, Wang Xiaofei
Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
J R Stat Soc Series B Stat Methodol. 2023 Apr 6;85(3):575-596. doi: 10.1093/jrsssb/qkad017. eCollection 2023 Jul.
We propose a test-based elastic integrative analysis of the randomised trial and real-world data to estimate treatment effect heterogeneity with a vector of known effect modifiers. When the real-world data are not subject to bias, our approach combines the trial and real-world data for efficient estimation. Utilising the trial design, we construct a test to decide whether or not to use real-world data. We characterise the asymptotic distribution of the test-based estimator under local alternatives. We provide a data-adaptive procedure to select the test threshold that promises the smallest mean square error and an elastic confidence interval with a good finite-sample coverage property.
我们提出一种基于检验的随机试验和真实世界数据的弹性综合分析方法,以利用已知效应修饰因素向量估计治疗效果异质性。当真实世界数据不存在偏差时,我们的方法将试验数据和真实世界数据相结合,以进行有效估计。利用试验设计,我们构建了一个检验,以决定是否使用真实世界数据。我们刻画了局部备择假设下基于检验的估计量的渐近分布。我们提供了一种数据自适应程序来选择能保证最小均方误差的检验阈值以及具有良好有限样本覆盖特性的弹性置信区间。