Rudolph Kara E, van der Laan Mark J
University of California, Berkeley, USA.
University of California, San Francisco, USA.
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1509-1525. doi: 10.1111/rssb.12213. Epub 2016 Oct 31.
We develop robust targeted maximum likelihood estimators (TMLE) for transporting intervention effects from one population to another. Specifically, we develop TMLE estimators for three transported estimands: intent-to-treat average treatment effect (ATE) and complier ATE, which are relevant for encouragement-design interventions and instrumental variable analyses, and the ATE of the exposure on the outcome, which is applicable to any randomized or observational study. We demonstrate finite sample performance of these TMLE estimators using simulation, including in the presence of practical violations of the positivity assumption. We then apply these methods to the Moving to Opportunity trial, a multi-site, encouragement-design intervention in which families in public housing were randomized to receive housing vouchers and logistical support to move to low-poverty neighborhoods. This application sheds light on whether effect differences across sites can be explained by differences in population composition.
我们开发了稳健的靶向最大似然估计器(TMLE),用于将干预效果从一个总体转移到另一个总体。具体而言,我们针对三种转移估计量开发了TMLE估计器:意向性治疗平均治疗效果(ATE)和依从者ATE,它们与鼓励设计干预和工具变量分析相关;以及暴露对结局的ATE,适用于任何随机或观察性研究。我们通过模拟展示了这些TMLE估计器的有限样本性能,包括在实际违反正性假设的情况下。然后,我们将这些方法应用于“搬到机会”试验,这是一项多地点的鼓励设计干预,其中公共住房家庭被随机分配接受住房券和后勤支持,以搬到低贫困社区。该应用揭示了各地点之间的效果差异是否可以通过人口构成的差异来解释。