Suppr超能文献

基于斐波那契Q矩阵的双稳态忆阻器耦合FN-HR神经网络的动态分析及加密应用

Dynamic analysis of FN-HR neural network coupled of bistable memristor and encryption application based on Fibonacci Q-Matrix.

作者信息

Sun Junwei, Li Chuangchuang, Wang Yanfeng, Wang Zicheng

机构信息

School of Electrical Information and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2975-2992. doi: 10.1007/s11571-023-10025-5. Epub 2024 Jun 10.

Abstract

In this paper, a cosine hyperbolic memristor model is proposed with bistable asymmetric hysteresis loops. A neural network of coupled hyperbolic memristor is constructed by using the Fitzhugh-Nagumo model and the Hindmarsh-Rose model. The coupled neural network with a large number of equilibrium points is obtained by numerical analysis. In addition, the coexisting discharge behavior of the coupled neural network is revealed using local attractor basins. The complex dynamic properties of the memristor-coupled neural network are verified by analyzing the two-parameter Lyapunov exponential map and spectral entropy map, and the equivalent circuit of the coupled neural network is designed to prove the accuracy of the numerical analysis. Finally, an image encryption algorithm is proposed, which combines coupled neural network and Fibonacci Q-Matrix. The numerical analysis demonstrates that the algorithm exhibits strong security and resistance against cracking attempts.

摘要

本文提出了一种具有双稳态非对称滞后回线的双曲余弦忆阻器模型。利用Fitzhugh-Nagumo模型和Hindmarsh-Rose模型构建了耦合双曲忆阻器神经网络。通过数值分析得到了具有大量平衡点的耦合神经网络。此外,利用局部吸引子盆地揭示了耦合神经网络的共存放电行为。通过分析双参数Lyapunov指数图和谱熵图验证了忆阻器耦合神经网络的复杂动力学特性,并设计了耦合神经网络的等效电路以证明数值分析的准确性。最后,提出了一种将耦合神经网络与Fibonacci Q矩阵相结合的图像加密算法。数值分析表明,该算法具有很强的安全性和抗破解能力。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验