Suppr超能文献

一种用于利用卫星遥感和城市传感器网络数据进行城市热岛精细尺度预测的集成网络地理信息系统(CyberGIS)与机器学习框架。

An integrated cyberGIS and machine learning framework for fine-scale prediction of Urban Heat Island using satellite remote sensing and urban sensor network data.

作者信息

Lyu Fangzheng, Wang Shaohua, Han Su Yeon, Catlett Charlie, Wang Shaowen

机构信息

cyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at Urbana-Champaign, Urbana, IL USA.

Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL USA.

出版信息

Urban Inform. 2022;1(1):6. doi: 10.1007/s44212-022-00002-4. Epub 2022 Sep 9.

Abstract

Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency coverage of a particular urban area. This low temporal frequency has restricted the development of models for predicting UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems (cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by rapid advances in urban sensor network technologies and high-performance computing, this framework is designed to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. Humidity, distance to geographic center, and PM concentration are identified as important factors contributing to the model performance. Furthermore, we estimate UHI in Chicago with 10-min temporal frequency and 1-km spatial resolution on the hottest day in 2018. It is demonstrated that the RFR model can accurately predict UHI at fine spatiotemporal scales with high-frequency urban sensor network data integrated with satellite remote sensing data.

摘要

由于气候变化和快速城市化,城市热岛(UHI)现象在大都市地区表现为气温显著高于周边地区,已对城市社区造成负面影响。基于卫星遥感数据的城市热岛研究中,时间粒度往往受限,这类数据通常对特定城市区域的覆盖频率为多天一次。这种低时间频率限制了城市热岛预测模型的发展。为解决这一限制,本研究开发了一个基于网络的地理信息科学与系统(网络地理信息系统)框架,该框架包含多个机器学习模型,用于结合聚焦于伊利诺伊州芝加哥市2018年至2020年的高频城市传感器网络数据和遥感数据来预测城市热岛。得益于城市传感器网络技术和高性能计算的快速发展,该框架旨在基于通过“万物阵列”(AoT)城市传感器网络收集的环境数据以及陆地卫星8号遥感影像,以精细的时空粒度预测芝加哥的城市热岛。我们的计算实验表明,以平均绝对误差作为评估指标,随机森林回归(RFR)模型在2020年的预测准确率为0.45摄氏度,在2018年和2019年为0.8摄氏度,优于其他模型。湿度、到地理中心的距离和颗粒物浓度被确定为对模型性能有重要贡献的因素。此外,我们在2018年最热的一天以10分钟的时间频率和1公里的空间分辨率估算了芝加哥的城市热岛。结果表明,随机森林回归模型能够利用整合了卫星遥感数据的高频城市传感器网络数据,在精细的时空尺度上准确预测城市热岛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75a6/9458483/734d6ad3980e/44212_2022_2_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验