Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183030. doi: 10.1016/j.bbamem.2019.183030. Epub 2019 Jul 30.
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
细菌通过高度保守的跨膜化学感受器(MCPs)、组氨酸激酶 CheA 和偶联蛋白 CheW 的组装来感知和响应其环境,以下简称“化学感应阵列”。近年来,人们在理解化学感应阵列的结构以及这种组装如何产生敏感和协作的反应方面取得了重大进展。然而,一个中心的突出问题是围绕受体如何调节 CheA 激酶(感觉系统的酶学输出)的活性。我们将重点放在最近的进展上,总结目前对阵列结构和功能的理解,以评论 CheA、受体和 CheW 产生细菌趋性特征的高灵敏度、增益和动态范围的分子机制。化学感应阵列的复杂性促使人们采用许多不同的方法进行研究。特别是结构方法、遗传学、细胞活性测定、纳米盘技术和冷冻电镜断层扫描提供了进展,这些进展连接了分子机制和细胞功能的不同尺度。鉴于化学感应阵列中组件的高度集成,我们最终的目标是了解这种网络化的分子相互作用如何产生一个整体,其效果确实大于其各部分的总和。本文是一个特刊的一部分,主题是:膜和膜蛋白的分子生物物理学。