Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic; Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
Adv Virus Res. 2023;116:173-213. doi: 10.1016/bs.aivir.2023.06.002. Epub 2023 Jul 13.
Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides "chemical" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.
禽(正)呼肠孤病毒(ARV)属于呼肠孤病毒科,是一种主要的家禽病原体,是导致鸡病毒性腱鞘炎和慢性呼吸道疾病的病原体。ARV 在细胞质包含体内复制,这些包含体被称为病毒工厂,通过相分离形成,因此属于更广泛的一类生物凝聚物。在这里,我们评估了已经开发或适用于跟踪病毒工厂形成、流动性和组成的不同光学成像方法,并将其与通过成熟的透射电子显微镜和电子断层扫描获得的互补结构信息进行了比较。首先描述了用于通过成像设置和跟踪细胞中病毒感染的分子和细胞生物学方面。然后我们证明,荧光恢复后光漂白的宽场版本是测量可移动病毒工厂流动性的有效工具。然后使用全层析位相显微镜技术在活细胞中三维成像病毒工厂的形成。感染细胞的共焦拉曼显微镜为无标记图像分割提供了“化学”对比,并解决了病毒工厂内和其他生物凝聚物中生物分子浓度的重要问题。电子显微镜和断层扫描补充了光学成像,提供了更高的分辨率结构细节,包括在三维细胞环境中可视化单个病毒粒子。