Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark.
Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Sci Rep. 2023 Jul 31;13(1):12407. doi: 10.1038/s41598-023-39539-y.
Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application. In particular, the microscopic-scale study of living systems can be possible through recording of temperature and biomagnetic field. In this work, we use such a quantum sensor to demonstrate such microscopic-scale recording of electrical activity from neurons in fragile living brain tissue. By recording weak magnetic field induced by ionic currents in mouse corpus callosum axons, we accurately recover signals from neuronal action potential propagation while demonstrating in situ pharmacology. Our sensor allows recording of the electrical activity in neural circuits, disruption of which can shed light on the mechanisms of disease emergence. Unlike existing techniques for recording activity, which can require potentially damaging direct interaction, our sensing is entirely passive and remote from the sample. Our results open a promising new avenue for the microscopic recording of neuronal signals, offering the eventual prospect of microscopic imaging of electrical activity in the living mammalian brain.
利用固态量子位的量子传感器已经展示出了出色的灵敏度,超越了使用经典设备所能达到的水平。特别是,基于金刚石中的色心的那些传感器已经通过利用微波相干控制下的荧光发射的场依赖性展示了对磁场的高灵敏度。鉴于金刚石具有高度的生物相容性,从生物样本中进行感测是一个关键的跨学科应用。特别是,通过记录温度和生物磁场,可以对活系统进行微观尺度的研究。在这项工作中,我们使用这样的量子传感器来演示对脆弱的活体脑组织中的神经元进行微观尺度的电活动记录。通过记录小鼠胼胝体轴突中离子电流引起的弱磁场,我们在原位药理学的同时,准确地从神经元动作电位传播中恢复信号。我们的传感器允许记录神经回路的电活动,其中断可以揭示疾病出现的机制。与现有的活动记录技术不同,这些技术可能需要潜在的破坏性直接相互作用,我们的传感是完全被动的,与样本没有直接接触。我们的结果为神经元信号的微观记录开辟了一条有前途的新途径,最终有望对活体哺乳动物大脑中的电活动进行微观成像。