Suppr超能文献

具有相关观测值的 c 最优实验设计的组合优化算法评估

Evaluation of combinatorial optimisation algorithms for c-optimal experimental designs with correlated observations.

作者信息

Watson Samuel I, Pan Yi

机构信息

Insitute of Applied Health Research, University of Birmingham, Birmingham, UK.

出版信息

Stat Comput. 2023;33(5):112. doi: 10.1007/s11222-023-10280-w. Epub 2023 Jul 29.

Abstract

UNLABELLED

We show how combinatorial optimisation algorithms can be applied to the problem of identifying c-optimal experimental designs when there may be correlation between and within experimental units and evaluate the performance of relevant algorithms. We assume the data generating process is a generalised linear mixed model and show that the c-optimal design criterion is a monotone supermodular function amenable to a set of simple minimisation algorithms. We evaluate the performance of three relevant algorithms: the local search, the greedy search, and the reverse greedy search. We show that the local and reverse greedy searches provide comparable performance with the worst design outputs having variance greater than the best design, across a range of covariance structures. We show that these algorithms perform as well or better than multiplicative methods that generate weights to place on experimental units. We extend these algorithms to identifying modle-robust c-optimal designs.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11222-023-10280-w.

摘要

未标注

我们展示了组合优化算法如何应用于在实验单元之间和内部可能存在相关性的情况下识别c最优实验设计的问题,并评估相关算法的性能。我们假设数据生成过程是一个广义线性混合模型,并表明c最优设计准则是一个单调超模函数,适用于一组简单的最小化算法。我们评估了三种相关算法的性能:局部搜索、贪婪搜索和反向贪婪搜索。我们表明,在一系列协方差结构中,局部搜索和反向贪婪搜索提供了可比的性能,最差设计输出的方差大于最佳设计。我们表明,这些算法的性能与为实验单元生成权重的乘法方法一样好或更好。我们将这些算法扩展到识别模型稳健的c最优设计。

补充信息

在线版本包含可在10.1007/s11222-023-10280-w获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3119/10386961/18be6278c2ed/11222_2023_10280_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验